储能科学与技术

• •    

杂原子掺杂石墨烯在锂离子电池负极中的研究进展

王良旺1(), 刘斌1(), 肖灵2, 何立粮1, 文芳1, 徐岩岩1   

  1. 1.广州特种设备检测研究院 国家石墨烯产品质量检验检测中心(广东),广东 广州 510100
    2.南京工业大学,城市建设学院,江苏 南京 211800
  • 收稿日期:2025-08-15 修回日期:2025-10-18
  • 通讯作者: 刘斌 E-mail:wanglw1990@163.com;lblflf@126.com
  • 作者简介:王良旺(1990—),男,博士,高级工程师,石墨烯材料研发及检测,E-mail:wanglw1990@163.com
  • 基金资助:
    广东省市场监督管理局项目(2024CT16);广州市市场监督管理局项目(2025KJ12)

Research progress of graphene doped with heteroatoms in the negative electrode of lithium-ion batteries

Liangwang WANG1(), Bin LIU1(), Ling XIAO2, Liliang HE1, Fang WEN1, Yanyan XU1   

  1. 1.National Graphene Products Quality Inspection and Testing Center (Guangdong), Guang Zhou Special Equipment Inspection and Research Institute, Guangzhou 510100, Guangdong, China
    2.College of Urban Construction, Nanjing Tech University, Nanjig 211800, jiangsu, China
  • Received:2025-08-15 Revised:2025-10-18
  • Contact: Bin LIU E-mail:wanglw1990@163.com;lblflf@126.com

摘要:

石墨烯凭借独特的二维结构和优异的性能在锂离子电池负极材料领域备受关注。然而,石墨烯的固有化学惰性和易聚集倾向制约了其应用。杂原子掺杂是优化石墨烯电化学性能的关键策略。本文综述了氮、硼、硫、磷、硅、卤素等不同杂原子掺杂石墨烯的制备方法、储锂机制及性能优势。杂原子掺杂石墨烯根据掺杂元素数量的不同分为单掺杂石墨烯和共掺杂石墨烯。杂原子掺杂效果主要受掺杂原子半径、电负性、元素组合以及掺杂方式等因素的影响。单掺杂石墨烯通过调控电子特性、引入缺陷和活性位点、扩展层间距等策略,可显著提升石墨烯的电化学性能。共掺杂石墨烯通过电子效应、空间效应及稳定性协同作用突破单掺杂石墨烯的性能瓶颈。杂原子掺杂尤其是共掺杂策略,通过多机制协同显著提升石墨烯的储锂容量、倍率性能及循环稳定性,为高性能锂离子电池负极材料的设计与开发提供了重要研究思路与方向。

关键词: 石墨烯, 杂原子掺杂, 单掺杂, 共掺杂, 锂离子电池

Abstract:

Graphene has attracted much attention in the field of lithium-ion battery negative electrode materials due to its unique two-dimensional structure and excellent performance. However, the inherent chemical inertness and tendency to aggregate of graphene limit its applications. Doping with heteroatoms is a key strategy for optimizing the electrochemical performance of graphene. This article reviews the preparation methods, lithium storage mechanisms, and performance advantages of graphene doped with different heteroatoms such as nitrogen, boron, sulfur, phosphorus, silicon, and halogens. Heteroatomic doped graphene is divided into single doped graphene and co doped graphene based on the number of doping elements. The doping effect of heteroatoms is mainly influenced by factors such as doping atom radius, electronegativity, element combination, and doping method. Single doped graphene can significantly enhance its electrochemical performance by regulating electronic properties, introducing defects and active sites, and expanding interlayer spacing. Co doped graphene breaks through the performance bottleneck of single doped graphene through the synergistic effects of electronic effects, spatial effects, and stability. The doping of heteroatoms, especially the co doping strategy, significantly improves the lithium storage capacity, rate performance, and cycling stability of graphene through multi mechanism synergy, providing important research ideas and directions for the design and development of high-performance lithium-ion battery negative electrode materials.

Key words: graphene, heteroatom doping, single doping, co doping, lithium-ion battery

中图分类号: