• •
王良旺1(
), 刘斌1(
), 肖灵2, 何立粮1, 文芳1, 徐岩岩1
收稿日期:2025-08-15
修回日期:2025-10-18
通讯作者:
刘斌
E-mail:wanglw1990@163.com;lblflf@126.com
作者简介:王良旺(1990—),男,博士,高级工程师,石墨烯材料研发及检测,E-mail:wanglw1990@163.com;
基金资助:
Liangwang WANG1(
), Bin LIU1(
), Ling XIAO2, Liliang HE1, Fang WEN1, Yanyan XU1
Received:2025-08-15
Revised:2025-10-18
Contact:
Bin LIU
E-mail:wanglw1990@163.com;lblflf@126.com
摘要:
石墨烯凭借独特的二维结构和优异的性能在锂离子电池负极材料领域备受关注。然而,石墨烯的固有化学惰性和易聚集倾向制约了其应用。杂原子掺杂是优化石墨烯电化学性能的关键策略。本文综述了氮、硼、硫、磷、硅、卤素等不同杂原子掺杂石墨烯的制备方法、储锂机制及性能优势。杂原子掺杂石墨烯根据掺杂元素数量的不同分为单掺杂石墨烯和共掺杂石墨烯。杂原子掺杂效果主要受掺杂原子半径、电负性、元素组合以及掺杂方式等因素的影响。单掺杂石墨烯通过调控电子特性、引入缺陷和活性位点、扩展层间距等策略,可显著提升石墨烯的电化学性能。共掺杂石墨烯通过电子效应、空间效应及稳定性协同作用突破单掺杂石墨烯的性能瓶颈。杂原子掺杂尤其是共掺杂策略,通过多机制协同显著提升石墨烯的储锂容量、倍率性能及循环稳定性,为高性能锂离子电池负极材料的设计与开发提供了重要研究思路与方向。
中图分类号:
王良旺, 刘斌, 肖灵, 何立粮, 文芳, 徐岩岩. 杂原子掺杂石墨烯在锂离子电池负极中的研究进展[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2025.0739.
Liangwang WANG, Bin LIU, Ling XIAO, Liliang HE, Fang WEN, Yanyan XU. Research progress of graphene doped with heteroatoms in the negative electrode of lithium-ion batteries[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0739.
表1
单掺杂石墨烯体系基本特性对比"
| 热处理法[ | BC3,B–C–O | 原子半径较大,扩大层间距,降低锂离子扩散势垒;缺电子体,增强锂离子吸附;提升sp3缺陷密度,增加活性位点 | 锂离子吸附能力强,抑制锂枝晶,倍率性能优异;长循环稳定性优于氮 | 掺杂效率低;高掺杂量易破坏碳骨架完整性 | |
| 球磨法[ | -C=S、-C-S-C-、-C-SOx-C- | 原子半径较大,诱导片层扭曲,增加缺陷密度;孤对电子与锂离子形成强配位 | 层间堆叠抑制效果好;与碳骨架结合稳定(-C-S-C-) | -C-SOx-C-较多时会对电化学性能产生不利影响 | |
| 热处理法[ | P-C、P-O、C-P-O | 原子半径较大,引发晶格畸变,增加边缘活性位点;N型掺杂,载流子密度提升;C-P-O键增强结构稳定性 | 缺陷结构可缓解体积膨胀,P-O键抑制电解液副反应,循环性能好。 | 掺杂难度较大;掺杂量窗口窄(1~2 at%最优) | |
表2
共掺杂石墨烯体系基本特性对比"
| [1] | Matsoso J B, Journet C, Coville N J, et al. Co-doping graphene with B and N heteroatoms for application in energy conversion and storage devices[J]. ChemNanoMat, 2022, 8(7): 1-21. |
| [2] | Zhang Y, Cheng Y, Song J, et al. Functionalization-assistant ball milling towards Si/graphene anodes in high performance Li-ion batteries[J]. Carbon, 2021, 181: 300-309. |
| [3] | Kopuklu B B, Tasdemir A, Gursel S A, et al. High stability graphene oxide aerogel supported ultrafine Fe3O4 particles with superior performance as a Li-ion battery anode[J]. Carbon, 2021, 174: 158-172. |
| [4] | Salahdin O D, Sayadi H, Solanki R, et al. Graphene and carbon structures and nanomaterials for energy storage[J]. Applied Physics A, 2022, 128(8): 1-23. |
| [5] | Tao Y, Kong D, Zhang C, et al. Monolithic carbons with spheroidal and hierarchical pores produced by the linkage of functionalized graphene sheets[J]. Carbon, 2014, 69: 169-177. |
| [6] | Liu T, Zhang L, Cheng B, et al. Holey graphene for electrochemical energy storage[J]. Cell reports physical Science, 2020, 1(10): 1-42. |
| [7] | Yang J, Sagar R U R, Anwar T, et al. Graphene foam as a stable anode material in lithium‐ion batteries[J]. International Journal of Energy Research, 2022, 46(4): 5226-5234. |
| [8] | Yong Z, Hui Z, Yi Z, et al. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons[J]. Progress in Chemistry, 2023, 35(1): 105-118. |
| [9] | Folorunso O, Sadiku R, Hamam Y, et al. Heteroatom-doped graphene: From fabrication to supercapacitor and batteries energy storage applications[J]. FlatChem, 2025,49(100807): 1-22. |
| [10] | Scotland P, Eddy L, Chen J, et al. Heteroatom-Substituted Reflashed Graphene[J]. ACS nano, 2025, 19(12): 11987-11998. |
| [11] | Chen L, Liu Y, Wang Y, et al. Facile large–scale synthesis of 3D crumpled N, O co–doped graphene nanosheets and their electrochemical properties[J]. International Journal of Hydrogen Energy, 2024, 53: 256-262. |
| [12] | Wang X, Sun G, Routh P, et al. Heteroatom-doped graphene materials: syntheses, properties and applications[J]. Chemical Society Reviews, 2014, 43(20): 7067-7098. |
| [13] | Chowdury M S K, Park Y J, Park S B, et al. Two-dimensional nanostructured pristine graphene and heteroatom-doped graphene-based materials for energy conversion and storage devices[J]. Sustainable Materials and Technologies, 2024, 42(e01124): 1-31. |
| [14] | Chen W, Ge C, Li J T, et al. Heteroatom-doped flash graphene[J]. ACS nano, 2022, 16(4): 6646-6656. |
| [15] | Capasso A, Dikonimos T, Sarto F, et al. Nitrogen-doped graphene films from chemical vapor deposition of pyridine: influence of process parameters on the electrical and optical properties[J]. Beilstein journal of nanotechnology, 2015, 6(1): 2028-2038. |
| [16] | Tian P, Zang J, Jia S, et al. Preparation of S/N co-doped graphene through a self-generated high gas pressure for high rate supercapacitor[J]. Applied Surface Science, 2018, 456: 781-788. |
| [17] | Agnoli S, Favaro M. Doping graphene with boron: a review of synthesis methods, physicochemical characterization, and emerging applications[J]. Journal of Materials Chemistry A, 2016, 4(14): 5002-5025. |
| [18] | Anil P, Kumar V V R K, Chandran B, et al. Structural and dielectric characteristics of CoFe2O4/nitrogen-enriched reduced graphene oxide composites via a one-pot solvothermal method[J]. Journal of Materials Science, 2025: 1-25. |
| [19] | Zhang X, Hsu A, Wang H, et al. Impact of chlorine functionalization on high-mobility chemical vapor deposition grown graphene[J]. ACS nano, 2013, 7(8): 7262-7270. |
| [20] | Rao C N R, Gopalakrishnan K, Govindaraj A. Synthesis, properties and applications of graphene doped with boron, nitrogen and other elements[J]. Nano today, 2014, 9(3): 324-343. |
| [21] | Li B, Zhang S, Cui C, et al. Comprehensive review on nitrogen-doped graphene: structure characterization, growth strategy, and capacitive energy storage[J]. Energy & Fuels, 2022, 37(2): 902-918. |
| [22] | Jeon I Y, Choi H J, Ju M J, et al. Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion[J]. Scientific reports, 2013, 3(2260): 1-7. |
| [23] | Bagley J D, Kumar D K, See K A, et al. Selective formation of pyridinic-type nitrogen-doped graphene and its application in lithium-ion battery anodes[J]. RSC advances, 2020, 10(65): 39562-39571. |
| [24] | 刘红. 杂原子掺杂碳及其复合材料作为锂离子电池负极的电化学性能研究[D].中国矿业大学,2020.DOI:10.27623/d.cnki.gzkyu.2020.002508. |
| [25] | Yu Y X. Can all nitrogen-doped defects improve the performance of graphene anode materials for lithium-ion batteries?[J]. Physical Chemistry Chemical Physics, 2013, 15(39): 16819-16827. |
| [26] | Sui Z Y, Wang C, Yang Q S, et al. A highly nitrogen-doped porous graphene–an anode material for lithium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(35): 18229-18237. |
| [27] | Xu H, Ma L, Jin Z. Nitrogen-doped graphene: Synthesis, characterizations and energy applications[J]. Journal of energy chemistry, 2018, 27(1): 146-160. |
| [28] | Fang W, Zhang N, Fan L, et al. Bi2O3 nanoparticles encapsulated by three-dimensional porous nitrogen-doped graphene for high-rate lithium ion batteries[J]. Journal of Power Sources, 2016, 333: 30-36. |
| [29] | Xing Z, Ju Z, Zhao Y, et al. One-pot hydrothermal synthesis of Nitrogen-doped graphene as high-performance anode materials for lithium ion batteries[J]. Scientific reports, 2016, 6(1): 26146. |
| [30] | Tasdemir A, Bulut Kopuklu B, Kirlioglu A C, et al. The influence of nitrogen doping on reduced graphene oxide as highly cyclable Li-ion battery anode with enhanced performance[J]. International Journal of Hydrogen Energy, 2021, 46(21): 11865-11877. |
| [31] | Ting P M, Huang J Y, Muruganantham R, et al. Nitrogen-doping effects on few-layer graphene as an anode material for lithium-ion batteries[J]. Materials Today Communications, 2022, 31: 103498. |
| [32] | Ubhi M K, Kaur M, Grewal J K, et al. Phosphorous-and boron-doped graphene-based nanomaterials for energy-related applications[J]. Materials, 2023, 16(3): 1155. |
| [33] | Ullah S, Denis P A, Sato F. First-principles study of dual-doped graphene: towards promising anode materials for Li/Na-ion batteries[J]. New Journal of Chemistry, 2018, 42(13): 10842-10851. |
| [34] | Chang C, Yin S, Xu J. Exploring high-energy and mechanically robust anode materials based on doped graphene for lithium-ion batteries: a first-principles study[J]. RSC advances, 2020, 10(23): 13662-13668. |
| [35] | Liu H, Dong H, Ji Y, et al. The adsorption, diffusion and capacity of lithium on novel boron-doped graphene nanoribbon: A density functional theory study[J]. Applied Surface Science, 2019, 466: 737-745. |
| [36] | Guo X, Hou Y, Chen X, et al. Tuning the structural stability and electrochemical properties in graphene anode materials by B doping: a first-principles study[J]. Physical Chemistry Chemical Physics, 2022, 24(35): 21452-21460. |
| [37] | Chang C, Yin S, Xu J. Exploring high-energy and mechanically robust anode materials based on doped graphene for lithium-ion batteries: a first-principles study[J]. RSC advances, 2020, 10(23): 13662-13668. |
| [38] | Sahoo M, Sreena K P, Vinayan B P, et al. Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery[J]. Materials Research Bulletin, 2015, 61: 383-390. |
| [39] | Liu W, Zhai P, Qin S, et al. Boron-doping induced lithophilic transition of graphene for dendrite-free lithium growth[J]. Journal of Energy Chemistry, 2021, 56: 463-469. |
| [40] | Latif U, Raza M A, Rehman Z U, et al. Role of sulfur and phosphorous doping on the electrochemical performance of graphene oxide-based electrodes[J]. Electrochimica Acta, 2024, 497: 144581. |
| [41] | Fan Q, Noh H J, Wei Z, et al. Edge-thionic acid-functionalized graphene nanoplatelets as anode materials for high-rate lithium ion batteries[J]. Nano Energy, 2019, 62: 419-425. |
| [42] | Gürsu H, Güner Y, Dermenci K B, et al. A novel green and one-step electrochemical method for production of sulfur-doped graphene powders and their performance as an anode in Li-ion battery[J]. Ionics, 2020, 26: 4909-4919. |
| [43] | Yang N, Zheng X, Li L, et al. Influence of phosphorus configuration on electronic structure and oxygen reduction reactions of phosphorus-doped graphene[J]. The Journal of Physical Chemistry C, 2017, 121(35): 19321-19328. |
| [44] | Kumar R, Sahoo S, Joanni E, et al. Heteroatom doped graphene engineering for energy storage and conversion[J]. Materials Today, 2020, 39: 47-65. |
| [45] | Yang N, Zheng X, Li L, et al. Influence of phosphorus configuration on electronic structure and oxygen reduction reactions of phosphorus-doped graphene[J]. The Journal of Physical Chemistry C, 2017, 121(35): 19321-19328. |
| [46] | Zhang C, Mahmood N, Yin H, et al. Synthesis of phosphorus‐doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries[J]. Advanced materials, 2013, 25(35): 4932-4937. |
| [47] | Stolbov D, Chernyak S, Ivanov A, et al. Silicon-doped graphene nanoflakes with tunable structure: Flexible pyrolytic synthesis and application for lithium-ion batteries[J]. Applied Surface Science, 2022, 592(153268): 1-10. |
| [48] | Liu H, Yang W, Che S, et al. Silicon doped graphene as high cycle performance anode for lithium-ion batteries[J]. Carbon, 2022, 196: 633-638. |
| [49] | Zhang X, Hsu A, Wang H, et al. Impact of chlorine functionalization on high-mobility chemical vapor deposition grown graphene[J]. ACS nano, 2013, 7(8): 7262-7270. |
| [50] | Xu J, Jeon I Y, Seo J M, et al. Edge‐selectively halogenated graphene nanoplatelets (XGnPs, X= Cl, Br, or I) prepared by ball‐milling and used as anode materials for lithium‐ion batteries[J]. Advanced materials, 2014, 26(43): 7317-7323. |
| [51] | Luan Y, Yin J, Zhu K, et al. Arc-discharge production of high-quality fluorine-modified graphene as anode for Li-ion battery[J]. Chemical Engineering Journal, 2020, 392(123668): 1-7. |
| [52] | Ahmad Y, Batisse N, Chen X, et al. Preparation and applications of fluorinated graphenes[J]. C, 2021, 7(1): 1-23. |
| [53] | Wang L, Sofer Z, Zboril R, et al. Phosphorus and Halogen Co‐Doped Graphene Materials and their Electrochemistry[J]. Chemistry–A European Journal, 2016, 22(43): 15444-15450. |
| [54] | Jang W, Kim J, Lee S, et al. N/S co-doped nanocomposite of graphene oxide and graphene-like organic molecules as all-carbonaceous anode material for high-performance Li-ion batteries[J]. Composites Part B: Engineering, 2025, 291: 111994. |
| [55] | Denis P A. Lithium adsorption on heteroatom mono and dual doped graphene[J]. Chemical Physics Letters, 2017, 672: 70-79. |
| [56] | Cai D, Wang C, Shi C, et al. Facile synthesis of N and S co-doped graphene sheets as anode materials for high-performance lithium-ion batteries[J]. Journal of Alloys and Compounds, 2018, 731: 235-242. |
| [57] | Thakur A K, Kurtyka K, Majumder M, et al. Recent advances in boron‐and nitrogen‐doped carbon‐based materials and their various applications[J]. Advanced materials interfaces, 2022, 9(2101964): 1-27. |
| [58] | Zhang L, He Q, Huang S, et al. A novel boron and nitrogen co-doped three-dimensional porous graphene sheet framework as high performance Li-ion battery anode material[J]. Inorganic Chemistry Communications, 2018, 96: 159-164. |
| [59] | Ma X, Ning G, Qi C, et al. Phosphorus and nitrogen dual-doped few-layered porous graphene: a high-performance anode material for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(16): 14415-14422. |
| [60] | Sun Y, Zhu D, Liang Z, et al. Facile renewable synthesis of nitrogen/oxygen co-doped graphene-like carbon nanocages as general lithium-ion and potassium-ion batteries anode[J]. Carbon, 2020, 167: 685-695. |
| [61] | Li P, Liu Y, Bao X, et al. Nitrogen and fluorine co-doped graphene for ultra-stable lithium metal anodes[J]. Nano Research, 2024, 17(8): 7212-7220. |
| [62] | Liu H, Tang Y, Zhao W, et al. Facile Synthesis of Nitrogen and Halogen Dual‐Doped Porous Graphene as an Advanced Performance Anode for Lithium‐Ion Batteries[J]. Advanced Materials Interfaces, 2018, 5(1701261): 1-9. |
| [1] | 谈秀雯, 李凌. 局部过热下锂电池热失控特性及其热管理研究[J]. 储能科学与技术, 2025, 14(9): 3521-3529. |
| [2] | 陈峥, 胡竞元, 赵志刚, 申江卫, 夏雪磊, 魏福星. 双体系混装电池组热特性研究及风冷散热结构优化[J]. 储能科学与技术, 2025, 14(9): 3463-3475. |
| [3] | 陈文艳, 贺瑞璘, 常建, 邓永红. 不同形态液态金属电极的储锂机制研究[J]. 储能科学与技术, 2025, 14(9): 3290-3300. |
| [4] | 邓拓, 周海平, 刘煜, 刘畅, 李梓恺, 吴孟强. 化学气相沉积法制备硅碳负极的研究进展[J]. 储能科学与技术, 2025, 14(9): 3354-3372. |
| [5] | 赵岩, 刘浩, 易宗琳, 李莉, 谢莉婧, 苏方远. FEC与VC在锂离子电池石墨负极界面行为研究[J]. 储能科学与技术, 2025, 14(9): 3249-3258. |
| [6] | 林季锦, 刘倩, 曲涛, 李京鲲, 黄东永, 朱晓庆, 巨星. 锂离子电池储能系统浸没液冷的技术经济性分析[J]. 储能科学与技术, 2025, 14(9): 3622-3635. |
| [7] | 封居强, 张成知, 陈雨杭. 基于数字孪生的高精度SOC和温度联合估计方法[J]. 储能科学与技术, 2025, 14(9): 3567-3580. |
| [8] | 白晓宇, 筵亚静, 张志荣, 孔令丽. 复合石墨锂离子电池性能研究[J]. 储能科学与技术, 2025, 14(9): 3259-3268. |
| [9] | 张磊. 锂离子电池储能电站的运行状态监测与评估[J]. 储能科学与技术, 2025, 14(9): 3538-3540. |
| [10] | 包新宇, 孔祥栋, 吕桃林, 朱志成, 韩雪冰, 来鑫, 郑岳久, 孙涛. 基于产线大数据的电池内阻预测及快速分选方法[J]. 储能科学与技术, 2025, 14(9): 3541-3551. |
| [11] | 杨斌, 杨军, 徐浪, 温浩伟, 刘登锋, 阮殿波. 电容型锂离子电池的球头压痕对其安全性研究[J]. 储能科学与技术, 2025, 14(8): 3090-3099. |
| [12] | 张腾, 常国峰. 基于单体特征参数差异的电池组热特性和热一致性研究[J]. 储能科学与技术, 2025, 14(8): 3194-3206. |
| [13] | 高蕾, 顾洪汇, 张益明, 黄伟, 陆海燕, 周琳, 顾梅嵘. 超高功率锂离子电池脉冲性能研究[J]. 储能科学与技术, 2025, 14(8): 2942-2949. |
| [14] | 徐成善, 孙烨, 杨智凯, 赵明强, 李亚伦, 冯旭宁, 王贺武, 卢兰光, 欧阳明高. 储能锂离子电池系统热失控诱发电弧研究进展[J]. 储能科学与技术, 2025, 14(8): 3037-3050. |
| [15] | 李鹏举, 陈晓宇, 谢佳, 沈佳妮, 贺益君. 锂离子电池功率状态预测方法研究进展[J]. 储能科学与技术, 2025, 14(8): 3028-3036. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||