• •
熊杰1(
), 于海波1, 李响1, 朱建2, 王万纯1, 李创1
收稿日期:2025-09-04
修回日期:2025-11-03
通讯作者:
熊杰
E-mail:xiongj@nrec.com
作者简介:熊杰(1991—),硕士研究生,工程师,快速机械开关、储能电池模块等新型电力设备,E-mail:xiongj@nrec.com;
基金资助:
Jie XIONG1(
), Haibo YU1, Xiang LI1, Jian ZHU2, Wanchun WANG1, Chuang LI1
Received:2025-09-04
Revised:2025-11-03
Contact:
Jie XIONG
E-mail:xiongj@nrec.com
摘要:
锂电池储能在辅助可再生能源并网、电网调频和调峰等方面发挥重要作用,精准的电池模型描述是储能电池系统状态估计和能量管理的基础。本文对储能锂电池在充放电过程中的电特性和热特性进行了研究。采用多物理场耦合建立储能液冷电池模块的有限元仿真计算模型,并求解得到充放电全过程电池模块的电特性、温度场分布和流场分布。搭建充放电测试平台对某液冷电池模块进行了试验测量,得到充放电过程中电压、电流、荷电状态等电特性参数和产热功率、冷却功率、温度等热特性参数随时间的变化,实验测试结果和仿真计算结果匹配良好。最后通过仿真计算模型对比分析了冷却液流量和电池初始温度对电池模块的电特性、热特性和流场特性的影响。该仿真计算方法和所获结果能为储能锂电池的状态估计、热管理参数优化提供依据。
中图分类号:
熊杰, 于海波, 李响, 朱建, 王万纯, 李创. 储能锂电池充放电特性和热管理研究[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2025.0788.
Jie XIONG, Haibo YU, Xiang LI, Jian ZHU, Wanchun WANG, Chuang LI. Research on charge-discharge characteristics and thermal management of lithium battery for energy storage[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0788.
表2
不同冷却液流量的电池模块特性参数对比"
| 特性参数 | 流量/( L·min-1) | |||
|---|---|---|---|---|
| 2 | 3 | 5 | 8 | |
| 最大充电电流/V | 147.742 | 147.750 | 147.753 | 147.755 |
| 最大放电电流/A | -162.248 | -162.583 | -162.607 | -162.638 |
| 充电最高电压/V | 180.628 | 180.609 | 181.004 | 180.701 |
| 放电最低电压/V | 143.415 | 143.118 | 143.098 | 143.066 |
| 电芯最大压差/mV | 16.91 | 12.36 | 7.92 | 5.22 |
| 产热总量/J | 2.1618E5 | 2.1914E5 | 2.2145E5 | 2.2307E5 |
| 冷却总量/J | 1.5605E5 | 1.6359E5 | 1.6944E5 | 1.7382E5 |
| 冷却效率/% | 72.2% | 74.4% | 76.5% | 77.9% |
| 最高采样温度/℃ | 32.52 | 31.86 | 31.17 | 30.81 |
| 最高本体温度/℃ | 29.53 | 28.70 | 27.87 | 27.41 |
| 最大采样温差/℃ | 2.41 | 1.72 | 1.15 | 0.84 |
| 最大本体温差/℃ | 2.68 | 1.91 | 1.19 | 0.78 |
| 液冷板流阻/kPa | 5.08E3 | 9.86E3 | 24.2E3 | 57.8E3 |
| 冷却液最大流速/( m·s-1) | 1.68 | 2.47 | 3.99 | 6.17 |
表3
不同电芯初始温度的电池模块特性参数对比"
| 特性参数 | 电芯初始温度/℃ | ||
|---|---|---|---|
| 20 | 25 | 30 | |
| 最大充电电流/V | 147.753 | 148.295 | 149.229 |
| 最大放电电流/A | -162.607 | -162.576 | -162.237 |
| 充电最高电压/V | 181.004 | 181.641 | 181.564 |
| 放电最低电压/V | 143.098 | 143.125 | 143.424 |
| 电芯最大压差/mV | 7.92 | 12.46 | 12.98 |
| 产热总量/J | 2.2145E5 | 2.1026E5 | 2.0404E5 |
| 冷却总量/J | 1.6944E5 | 1.9207E5 | 2.1980E5 |
| 冷却效率/% | 76.5% | 91.3% | 107.7% |
| 最高采样温度/℃ | 31.17 | 31.93 | 32.43 |
| 最高本体温度/℃ | 27.87 | 28.75 | 29.90 |
| 最大采样温差/℃ | 1.15 | 1.81 | 2.04 |
| 最大本体温差/℃ | 1.19 | 1.93 | 2.08 |
| 液冷板流阻/kPa | 24.2E3 | 24.2E3 | 24.2E3 |
| 冷却液最大流速/( m·s-1) | 3.99 | 3.99 | 3.99 |
| [1] | 张智刚,康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报,2022,42(8):2806- 2819. |
| ZHANG Zhigang,KANG Chongqing. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE,2022,42 (8):2806-2819. | |
| [2] | 国家发展改革委,国家能源局. 国家能源局关于加快推动新型储能发展的指导意见[N]. 北京:发展改革委员会,[2021- 7- 15],http://www.gov.cn/zhengce /zhengceku/2021/07/24/content_5627088.htm. |
| National Development and reform commission,National Energy Administration. Guiding opinions of the national energy administration on accelerating the development of new energy storage[N]. Beijing:National Development and Reform Commission,[2021-7-15],http://www.gov.cn/zhengce/zhengceku/2021/07/24/content_5627088.htm. | |
| [3] | 贺鸿杰,张宁,杜尔顺,等. 电网侧大规模电化学储能运行效率及寿命衰减建模方法综述[J]. 电力系统自动化,2020,44(12):193-207. |
| HE hongjie,ZHANG Ning,DU Ershun,et al. Review on modeling method for operation efficiency and lifespan decay of largescale electrochemical energy storage on power grid side[J]. Automation of electric power systems,2020,44(12):193-207. | |
| [4] | 徐俊,郭喆晨,谢延敏,等. 储能锂电池系统综合管理研究进展[J]. 西安交通大学学报,2024,58(10):1-23. |
| XU Jun,GUO Zhechen,XIE Yanmin,et al. Review of research progress in integrated management for energy storage lithium battery systems[J]. Journal of Xi'an Jiaotong University,2024,58(10):1-23. | |
| [5] | 匡柯,孙跃东,任东生,等. 车用锂离子电池电化学-热耦合高效建模方法[J]. 机械工程学报,2021,57(14):10-22. |
| KUANG ke,SUN Yuedong,REN Dongsheng,et al. Efficient approach for electrochemical-thermal coupled modeling of large-format lithium-ion power battery. Journal of Mechanical Engineering,2021,57(14):10-22. | |
| [6] | 严康为,龙鑫林,鲁军勇,等. 高倍率磷酸铁锂电池简化机理建模与放电特性分析[J]. 电工技术学报,2022, 37(3):599-609. |
| YAN Kangwei,LONG Xinlin,LU Junyong,et al. Simplified mechanism modeling and discharge characteristic analysis of high C- rate LiFePO4 battery[J]. Transactions of China Electrotechnical Society,2022,37(3):599-609. | |
| [7] | RAYIT N S, CHOWDHURY J I, BALTA-OZKAN N. Techno-economic optimisation of battery storage for grid-level energy services using curtailed energy from wind[J]. Journal of Energy Storage, 2021, 39: 102641. |
| [8] | MAYYAS A,CHADLY A,AMER S T,et al. Economics of the Li-ion batteries and reversible fuel cells as energy storage systems when coupled with dynamic electricity pricing schemes[J]. Energy, 2022, 239: 121941. |
| [9] | Mallarapu A, Kim J, Carney K,et al. Modeling Extreme Deformations in Lithium Ion Batteries[J]. eTransportation,2020,(4):100065. |
| [10] | Al-ZAREER M, DA SILVA C, AMON C H. Predicting anisotropic thermophysical properties and spatially distributed heat generation rates in pouch lithium-ion batteries[J]. Journal of Power Sources, 2021, 510: 230362. |
| [11] | lithium ion batteries for core temperature estimation and health monitoring[J]. IEEE Transactions on Control Systems Technology, 2012, 21(5): 1745-1755. |
| [12] | WILKE S, SCHWEITZER B, KHATEEB S, et al. Preventing thermal runaway propagation in lithium-ion battery packs using a phase change composite material: An experimental study[J]. Journal of Power Sources, 2017, 340: 51-59. |
| [13] | 龙潘,耿光超,江全元,等. 储能系统锂电池电热耦合建模及参数辨识方法研究[J]. 太阳能学报,2024,45(04):318-327. |
| LONG pan,GENG Guangchao,JIANG quanyuan,et al. Study on eletrothermal coupling modeling and parameter identification of lithium battery energy storage system[J]. Acta energiae solaris sinica,2024,45(04):318-327. | |
| [14] | 李航洋,阳同光. 计及动态非均匀热特性的储能软包锂电池充放电热路模型[J]. 电力系统保护与控制,2023,51(19):104-113. |
| LI Hangyang,YANG Tongguang. A charging /discharging thermal circuit model for energy storage pouch lithium batteries considering dynamic and non-uniform characteristics[J]. Power System Protection and Control,2023,51(19):104-113. | |
| [15] | 刘莹, 孙丙香, 赵鑫泽, 张珺玮. 基于电热耦合模型的宽温域锂离子电池SOC/SOP联合估计[J]. 储能科学与技术,2024,13 (09):3030-3041. |
| LIU YING,SUN Bingxiang,ZHAO Xieze,ZHANG Junwei. Joint estimation of SOC/SOP for lithium-ion batteries across a wide temperature range using an electro-thermal coupling model [J]. Energy Storage Science and Technology,2024,13(09):3030-3041. | |
| [16] | 宋梦琼,彭宇,廖自强. 基于电化学热耦合模型的电池热管理研究[J]. 储能科学与技术,2024,13(02):578-585. |
| SONG Mengqiong,PENG Yu,LIAO Ziqiang. Research on battery thermal management based on electrochemical model[J]. Energy Storage Science and Technology,2024,13(02):578-585. | |
| [17] | 杜江龙,杨雯棋,黄凯,等. 复合相变材料/空冷复合式锂离子电池模块散热性能[J]. 化工学报,2023,74(02):674-689. |
| DU Jianglong,YANG Wenqi,HUANG Kai,et al. Heat dissipation performance of the module combined CPCM with air cooling for lithium-ion batteries[J]. CIESC Journal,2023,74(02):674-689. | |
| [18] | 郭喆晨,徐俊,王行早,等. 基于一维/三维热模型的平板热管/液冷电池热管理系统优化设计[J]. 机械工程学报,2023,59(22):79-88. |
| GUO Zhechen,XU Jun,WANG Xingzao,et al. Optimal design of flat heat pipe-liquid cooling battery thermal management system based on 1D/3D thermal model[J]. Journal of Mechanical Engineering,2023,59(22):79-88. | |
| [19] | 汪朝晖,熊肖,高全杰,等. 基于仿蜘蛛网流道结构设计的圆柱形锂电池热管理系统性能研究[J]. 机械工程学报,2023,59(22):150-162. |
| WANG Zhaohui,XIONG Xiao,GAO Quanjie,et al. Performance study of cylindrical lithium battery thermal management system based on the design of spider web-like flow channel structure[J]. Journal of Mechanical Engineering,2023,59(22):150-162. | |
| [20] | 马菁,段志勇,孙勇飞,等. 基于热管的储能锂电池散热特性数值模拟研究[J]. 中国电机工程学报,2023,43(17):6737-6746. |
| MA Jing,DUAN Zhiyong,SUN Yongfei,et al. Numerical simulation on the heat dissipation characteristics of lithium battery for energy storage based on heat pipe[J]. Proceedings of the CSEE,2023,43(17):6737-6746. | |
| [21] | 李长龙,崔纳新,常龙,等. 风冷并联电池模组的建模方法与不一致性研究[J]. 机械工程学报,2022,58(12):168-179. |
| LI Changlong,CUI Naxin,CHANG Long,et al. Modeling and inconsistency analysis of parallel-connected battery module with forced-air cooling[J]. Journal of Mechanical Engineering,2022,58(12):168-179. | |
| [22] | 颜宁,李吉洋,李相俊,等.考虑电热耦合特性的电池模组多状态协同估计方法研究[J/OL].中国电机工程学报,1-13[2024-12-12].https://doi.org/10.13334/j.0258-8013.pcsee.241242. |
| Yan Ning,Li Jiyang, Li Xiangjun,et al. Multi-state cooperative estimation of battery modules considering electro-thermal coupling characteristics[J/OL]. Proceedings of the CSEE,1-13[2024-12-12]. https://doi.org/10.13334/j.0258-8013.pcsee.241242. | |
| [23] | 张洪欣. 电磁场与电磁波[M]. 北京:清华大学出版社, 2015. |
| Zhang Hongxin. Field and wave Electromagnetics [M]. Beijing:Tsinghua University Press, 2015. | |
| [24] | Ekstrom H,Fridholm B,Lindbergh G. Comparison of lumped diffusion models for voltage prediction of a lithium-ion battery cell during dynamic loads[J].Journal of Power Sources, 2018, 402((OCT.31)):296-300. |
| [25] | 陶文铨. 传热学[M]. 北京:高等教育出版社, 2019. |
| Tao Wenquan. Heat Transfer [M]. Beijing:Higher Education Press, 2019. | |
| [26] | 张鸣远. 高等工程流体力学[M]. 西安:西安交通大学出版社, 2019. |
| Zhang Mingyuan. Advanced Engineering Mechanics [M]. Xi'an:Xi'an Jiaotong University Press, 2006. |
| [1] | 谈秀雯, 李凌. 局部过热下锂电池热失控特性及其热管理研究[J]. 储能科学与技术, 2025, 14(9): 3521-3529. |
| [2] | 王晓鹏, 张修澳, 赵红霞, 孙秋艳, 张浩, 辛公明, 柏超. 燃煤电厂耦合储能系统的热力学分析[J]. 储能科学与技术, 2025, 14(9): 3509-3520. |
| [3] | 陈峥, 胡竞元, 赵志刚, 申江卫, 夏雪磊, 魏福星. 双体系混装电池组热特性研究及风冷散热结构优化[J]. 储能科学与技术, 2025, 14(9): 3463-3475. |
| [4] | 李莹, 刘淑丽, 邹煜良, 王义函, 陈廷森, 沈永亮. 释能过程沸石填充式热化学反应器热性能参数敏感性分析[J]. 储能科学与技术, 2025, 14(9): 3330-3339. |
| [5] | 辛传奇, 王文权, 陈伟, 周练武, 刘继芹, 解恺, 安金彪, 马涛, 熊昊天. 压缩空气储能技术多维度应用与发展路径分析[J]. 储能科学与技术, 2025, 14(9): 3636-3647. |
| [6] | 郑彦霖, 郭欢, 尹钊, 徐玉杰, 张华良, 陈海生. 微型压缩空气储能热电联供系统变负荷运行特性[J]. 储能科学与技术, 2025, 14(9): 3488-3499. |
| [7] | 王锦峰, 刘悦, 钟鸿杰, 曹峻鸣, 吴兴隆. 钼基电极材料的电化学储能应用进展[J]. 储能科学与技术, 2025, 14(9): 3340-3353. |
| [8] | 王凯亮, 孙宇军, 钟锦星, 苏向阳, 李俊辉, 刘宗扬, 蔡煜, 陈艺丹. 考虑储能寿命和经验模态分解的区域配电网混合储能配置[J]. 储能科学与技术, 2025, 14(9): 3417-3430. |
| [9] | 林季锦, 刘倩, 曲涛, 李京鲲, 黄东永, 朱晓庆, 巨星. 锂离子电池储能系统浸没液冷的技术经济性分析[J]. 储能科学与技术, 2025, 14(9): 3622-3635. |
| [10] | 徐成善, 李涵, 王炎, 卢兰光, 冯旭宁, 欧阳明高. 双层储能电池火蔓延特性及触发过程能量传递机制研究[J]. 储能科学与技术, 2025, 14(9): 3552-3563. |
| [11] | 李承晨, 余庆华, 代慧涛, 贾娜, 王琳, 孙彬博. 基于SrBr2·6H2O的封闭式热化学反应器储/放能特性模拟研究[J]. 储能科学与技术, 2025, 14(9): 3319-3329. |
| [12] | 艾立旺, 王伟伟, 蒋思远, 封海潮, 肖磊, 许孝卓. 直线电机重力储能系统充放电策略优化[J]. 储能科学与技术, 2025, 14(9): 3476-3487. |
| [13] | 刘明轩, 陈文涛, 申韶鹏, 张世杰, 韦振, 马彪, 李丹华, 刘仕强, 王芳. 储能用锂离子电池加速老化及老化后安全特性研究[J]. 储能科学与技术, 2025, 14(9): 3530-3537. |
| [14] | 赵峰, 杨明成, 郝宁, 陈东, 刘佳, 陈逸伦. 压缩空气储能系统透平负荷控制策略的研究与仿真实现[J]. 储能科学与技术, 2025, 14(9): 3500-3508. |
| [15] | 张子澳, 王星宇, 路新亮, 殷勇高, 王晨. 面向液态空气储能的新型径向流储冷填充床性能研究[J]. 储能科学与技术, 2025, 14(9): 3311-3318. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||