储能科学与技术

• •    

4C快充锂离子电池的石墨负极和电解液设计

李圆圆(), 刘欣, 刘超辉, 陈宇, 杨小龙, 钱振扬, 杨卓群, 郭万颖   

  1. 合肥国轩高科动力能源有限公司,安徽 合肥 230000
  • 收稿日期:2025-09-16 修回日期:2025-09-26
  • 通讯作者: 李圆圆 E-mail:liyuanyuan@gotion.com.cn
  • 作者简介:李圆圆(1995—),女,博士,工程师,研究方向为快充及长循环锂离子电池负极材料,E-mail:liyuanyuan@gotion.com.cn
  • 基金资助:

Graphite anode and electrolyte design for 4C fast-charging lithium-ion batteries

Yuanyuan LI(), Xin LIU, Chaohui LIU, Yu CHEN, Xiaolong YANG, Zhenyang QIAN, Zhuoqun YANG, Wanying GUO   

  1. Hefei Gotion High-tech Power Energy Co. , Ltd. , Hefei 230000, Anhui, China
  • Received:2025-09-16 Revised:2025-09-26
  • Contact: Yuanyuan LI E-mail:liyuanyuan@gotion.com.cn

摘要:

锂离子电池快速充电是电动汽车实现大规模经济成功的关键,4C快充技术亟待普及。针对石墨嵌锂动力学迟滞这一快充瓶颈,对石墨进行软碳包覆和电解液采用的乙酸乙酯(EA)溶剂是有效的解决方案。本文对石墨的软碳包覆方式(固相、液相)、包覆量(1.0%、1.5%)和电解液中的EA含量(10%、70%),开展3因子2水平全因子实验,系统验证了锂离子电池的内阻、存储性能和循环性能的响应情况。主要表现为通过包覆增加石墨无序度、通过添加EA增加电解液电导率可以改善内阻、但是劣化存储性能和循环性能。70% EA的内阻改善效果最佳,液相包覆内阻改善优于1.5%包覆量,直流内阻下降分别为21.12%、4.83%和2.53%。相应地,70% EA的存储性能劣化程度最高,液相包覆劣化程度次之,容量保持率下降分别为1.26%、1.17%,而1.5%包覆量对7天存储性能劣化,对28天存储性能无劣化。70% EA的4C快充循环性能劣化程度最高,液相包覆劣化程度与1.5%包覆量相当,600周容量保持率下降1.58%、0.35%、0.33%。70% EA的高温循环性能劣化程度最高,1.5%包覆量次之,600周容量保持率下降分别为0.97%、0.24%,但液相包覆对高温循环性能无劣化,表明液相包覆的优越性。本文为4C快充锂离子电池材料和体系设计提供了思路。

关键词: 锂离子电池, 石墨, 软碳包覆, 电解液, 乙酸乙酯

Abstract:

Fast-charging capability of lithium-ion batteries (LIBs) is crucial for the large-scale economic success of electric vehicles, making the widespread adoption of 4C fast-charging technology imperative. To address the sluggish kinetics of the lithium-ion intercalation into graphite, which is the key bottleneck for fast charging, applying soft carbon coating to graphite and utilizing ethyl acetate (EA) as the electrolyte solvent are effective solutions. This study conducted a 3-factor, 2-level full factorial experiment investigating the soft carbon coating methods (solid-phase, liquid-phase), the coating amount (1.0%, 1.5%) for graphite, and the EA content in electrolyte (10%, 70%), to systematically verify the response of internal resistance, storage performance, and cycling performance in LIBs. Increasing graphite disorder through coating and adding EA to enhance electrolyte conductivity optimize internal resistance while deteriorate storage and cycling performance. For internal resistance optimization, 70% EA demonstrated the most significant effect, liquid-phase coating outperformed 1.5% coating amount, achieving direct current internal resistance reductions of 21.12%, 4.83%, and 2.53%. For storage performance deterioration, 70% EA caused the largest extent and slightly more severe than liquid-phase coating, corresponding drops in capacity retention of 1.26% and 1.17%, 1.5% coating amount deteriorated 7-day storage performance but exhibited no observable deterioration in 28-day storage. For 4C fast-charging cycling performance deterioration, 70% EA induced the most critical severity, liquid-phase coating and 1.5% coating demonstrating comparable degradation, causing a decrease in the 600-cycle capacity retention of 1.58%, 0.35%, and 0.33%. For high-temperature cycling performance deterioration, 70% EA was the severest, followed by 1.5% coating, leading to a decrease in the 600-cycle capacity retention of 0.97% and 0.24%, liquid-phase coating caused no observable deterioration, indicating its superiority. This work provides valuable insights for material and system design in 4C fast-charging LIBs.

Key words: Lithium-ion battery, Graphite, Soft carbon coating, Electrolyte, Ethyl acetate