[1] |
ADAM A, WANDT J, KNOBBE E, et al. Fast-charging of automotive lithium-ion cells: In-situ lithium-plating detection and comparison of different cell designs[J]. Journal of the Electrochemical Society, 2020, 167(13):130503.
|
[2] |
WEISS M, RUESS R, KASNATSCHEEW J, et al. Fast charging of lithium-ion batteries: A review of materials aspects[J]. Advanced Energy Materials, 2021, 11(33):2101126.
|
[3] |
杲齐新, 赵景腾, 李国兴. 锂离子电池快速充电研究进展[J]. 储能科学与技术, 2023, 12(7):2166-2184.
|
|
GAO Qixin, ZHAO Jingteng, LI Guoxing. Research progress of fast-charging lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(7):2166-2184.
|
[4] |
ZHONG C, WENG S, WANG Z, et al. Kinetic limits and enhancement of graphite anode for fast-charging lithium-ion batteries[J]. Nano Energy, 2023, 117:108894.
|
[5] |
SHU W, ZENG Z, QIN M, et al. Perspective on fast-charging lithium-ion batteries: Mechanism, detection, and suppression of graphite anode lithium plating[J]. Energy Storage Materials, 2025, 81:104479.
|
[6] |
WENG S, YANG G, ZHANG S, et al. Kinetic limits of graphite anode for fast-charging lithium-ion batteries[J]. Nano-Micro Letters, 2023, 15(1):215.
|
[7] |
廖雅贇, 周峰, 张颖曦, 等. 锂离子电池快充石墨负极材料研究进展[J]. 储能科学与技术, 2024, 13(1):130-142.
|
|
LIAO Yayun, ZHOU Feng, ZHANG Yingxi, et al. Research progress of fast-charging graphite anode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(1):130-142.
|
[8] |
DONG Y, LIU C, RUI M, et al. Review on graphite anodes for fast-charging lithium-ion batteries: Mechanism, modification and characterizations[J]. Advanced Functional Materials, 2025, n/a(n/a):2506190.
|
[9] |
LEI S, ZENG Z, CHENG S, et al. Fast-charging of lithium-ion batteries: A review of electrolyte design aspects[J]. Battery Energy, 2023, 2(5):20230018.
|
[10] |
LI J, GUO C, TAO L, et al. Electrode and electrolyte design strategies toward fast-charging lithium-ion batteries[J]. Advanced Functional Materials, 2024, 34(49):2409097.
|
[11] |
HE J, MENG J, HUANG Y. Challenges and recent progress in fast-charging lithium-ion battery materials[J]. Journal of Power Sources, 2023, 570:232965.
|
[12] |
ZHANG D, LI L, ZHANG W, et al. Research progress on electrolytes for fast-charging lithium-ion batteries[J]. Chinese Chemical Letters, 2023, 34(1):107122.
|
[13] |
QIN Q, LI X, WANG Z, et al. Experimental and simulation study of direct current resistance decomposition in large size cylindrical lithium-ion battery[J]. Electrochimica Acta, 2023, 465:142947.
|
[14] |
LIN W, ZHU M, FAN Y, et al. Low temperature lithium-ion batteries electrolytes: Rational design, advancements, and future perspectives[J]. Journal of Alloys and Compounds, 2022, 905:164163.
|
[15] |
LU Y, ZHAO C-Z, HUANG J-Q, et al. The timescale identification decoupling complicated kinetic processes in lithium batteries[J]. Joule, 2022, 6(6):1172-1198.
|
[16] |
NIU P, YANG K, SONG Z, et al. An efficient electrochemical optimizer for the distribution of relaxation times of lithium-ion batteries[J]. Journal of Power Sources, 2024, 605:234489.
|
[17] |
ZHU H, RUSSELL J A, FANG Z, et al. A comparison of solid electrolyte interphase formation and evolution on highly oriented pyrolytic and disordered graphite negative electrodes in lithium-ion batteries[J]. Small, 2021, 17(52):2105292.
|
[18] |
LIU X, YIN L, REN D, et al. In situ observation of thermal-driven degradation and safety concerns of lithiated graphite anode[J]. Nature Communications, 2021, 12(1):4235.
|
[19] |
LU B, CHENG D, SREENARAYANAN B, et al. Key parameters in determining the reactivity of lithium metal battery[J]. ACS Energy Letters, 2023, 8(7):3230-3238.
|
[20] |
LI Z, YAO N, YU L, et al. Inhibiting gas generation to achieve ultralong-lifespan lithium-ion batteries at low temperatures[J]. Matter, 2023, 6(7):2274-2292.
|