储能科学与技术

• XXXX •    

锂离子电池用碳纳米管导电剂产业化应用研究进展

李连平1(), 梁波1, 侯明泰2(), 左昭贵1   

  1. 1.青海南玻新能源科技有限公司,青海 德令哈 817000
    2.青海大学,青海 西宁 810016
  • 收稿日期:2025-09-26 修回日期:2025-11-07
  • 通讯作者: 侯明泰 E-mail:lilp001@csgholding.com;mthou@qhu.edu.cn
  • 作者简介:李连平(1988—),男,硕士,工程师,研究方向为储能材料化工制备工艺及产业化应用研究,E-mail:lilp001@csgholding.com

Research progress on the industrial application of carbon nanotube conductive agents for lithium-ion batteries

Lianping LI1(), Bo LIANG1, Mingtai HOU2(), Zhaogui ZUO1   

  1. 1.Qinghai CSG New Energy Technology Co. , Ltd. Delingha 817000, Qinghai, China
    2.Qinghai University, Xining 810016, Qinghai, China
  • Received:2025-09-26 Revised:2025-11-07
  • Contact: Mingtai HOU E-mail:lilp001@csgholding.com;mthou@qhu.edu.cn

摘要:

碳纳米管(CNTs)是由sp2杂化碳原子构成的一维纳米材料,具有卓越的本征电导率和力学性能,通过“线接触-线桥接”协同机制在锂离子电池(LIBs)电极中构建高效三维导电网络,可显著提升电池的能量密度、倍率特性及循环稳定性,已成为高能量密度电池体系的核心材料。目前,多壁碳纳米管(MWCNTs)与炭黑复合导电体系已在高端锂电领域实现规模化应用,但单壁碳纳米管(SWCNTs)仍面临宏量制备技术不成熟、分散工艺复杂及综合成本较高等产业化挑战。本文系统综述CNTs导电剂产业化应用的最新进展:阐述CNTs构建长效电子传导路径、稳定电极/电解质界面和缓冲电极体积应变的微观机理;重点剖析流化床CVD技术对CNTs宏量制备的调控策略,以及纯化、表面修饰(如-COOH、N/B掺杂)和干燥工艺对电化学性能的优化机制;评述CNTs在磷酸铁锂(LFP)、高镍三元、硅基负极及全固态电池(ASSBs)等体系中的适配性,并提出基于性能、成本与应用场景的综合选型原则。综合分析表明,未来CNTs导电剂的性能突破需依托跨尺度制备技术整合(如催化剂逆向设计与AI工艺调控)、绿色低成本分散工艺开发(如生物基分散剂与干法电极技术适配)以及SWCNTs工程应用瓶颈突破(如多金属协同催化降本)三大路径,推动CNTs从"辅助导电材料"向"多功能核心材料"的战略转型,为下一代高能量密度、高安全性储能系统提供关键材料支撑与理论指导。

关键词: 锂离子电池, 碳纳米管, 导电剂, 储能材料

Abstract:

Carbon nanotubes (CNTs), one-dimensional nanomaterials composed of sp2-hybridized carbon atoms, possess exceptional intrinsic electrical conductivity and mechanical properties. They construct highly efficient three-dimensional conductive networks within lithium-ion battery (LIB) electrodes through a synergistic "line-contact to bridging" mechanism, significantly enhancing energy density, rate capability, and cycling stability. Consequently, CNTs have emerged as a critical material for high-energy-density battery systems. While multi-walled CNTs (MWCNTs) combined with carbon black have been widely adopted in high-end LIBs, the industrialization of single-walled CNTs (SWCNTs) remains challenging due to immature mass-production techniques, intricate dispersion processes, and high overall costs. This review systematically examines recent advances in the industrial application of CNT-based conductive agents. It elaborates on the microscopic mechanisms by which CNTs facilitate long-range electron conduction, stabilize electrode/electrolyte interfaces, and buffer electrode volume strain. The review further analyzes strategies for scalable CNT synthesis via fluidized bed chemical vapor deposition (CVD), alongside the performance optimization achieved through purification, surface functionalization (e.g., carboxylation, N/B doping), and drying processes. The compatibility of CNTs with various electrode systems—including lithium iron phosphate (LFP), high-nickel ternary cathodes, silicon-based anodes, and all-solid-state batteries (ASSBs)—is critically assessed, with practical selection guidelines proposed based on performance, cost, and application scenarios. Comprehensive analysis indicates that future breakthroughs depend on three key pathways: the integration of cross-scale manufacturing technologies (e.g., inverse catalyst design and AI-assisted process control), the development of green and low-cost dispersion methods (e.g., bio-based dispersants and adaptation for dry electrode technology), and overcoming the engineering bottlenecks of SWCNTs (e.g., cost reduction via multi-metal synergistic catalysis). These advancements are expected to propel the strategic evolution of CNTs from auxiliary conductive additives to multifunctional core components, providing crucial material support and theoretical guidance for next-generation high-energy-density and high-safety energy storage systems.

Key words: lithium-ion batteries, carbon nanotubes, conductive agents, energy storage materials

中图分类号: