• XXXX •
收稿日期:2025-09-26
修回日期:2025-11-07
通讯作者:
侯明泰
E-mail:lilp001@csgholding.com;mthou@qhu.edu.cn
作者简介:李连平(1988—),男,硕士,工程师,研究方向为储能材料化工制备工艺及产业化应用研究,E-mail:lilp001@csgholding.com;
Lianping LI1(
), Bo LIANG1, Mingtai HOU2(
), Zhaogui ZUO1
Received:2025-09-26
Revised:2025-11-07
Contact:
Mingtai HOU
E-mail:lilp001@csgholding.com;mthou@qhu.edu.cn
摘要:
碳纳米管(CNTs)是由sp2杂化碳原子构成的一维纳米材料,具有卓越的本征电导率和力学性能,通过“线接触-线桥接”协同机制在锂离子电池(LIBs)电极中构建高效三维导电网络,可显著提升电池的能量密度、倍率特性及循环稳定性,已成为高能量密度电池体系的核心材料。目前,多壁碳纳米管(MWCNTs)与炭黑复合导电体系已在高端锂电领域实现规模化应用,但单壁碳纳米管(SWCNTs)仍面临宏量制备技术不成熟、分散工艺复杂及综合成本较高等产业化挑战。本文系统综述CNTs导电剂产业化应用的最新进展:阐述CNTs构建长效电子传导路径、稳定电极/电解质界面和缓冲电极体积应变的微观机理;重点剖析流化床CVD技术对CNTs宏量制备的调控策略,以及纯化、表面修饰(如-COOH、N/B掺杂)和干燥工艺对电化学性能的优化机制;评述CNTs在磷酸铁锂(LFP)、高镍三元、硅基负极及全固态电池(ASSBs)等体系中的适配性,并提出基于性能、成本与应用场景的综合选型原则。综合分析表明,未来CNTs导电剂的性能突破需依托跨尺度制备技术整合(如催化剂逆向设计与AI工艺调控)、绿色低成本分散工艺开发(如生物基分散剂与干法电极技术适配)以及SWCNTs工程应用瓶颈突破(如多金属协同催化降本)三大路径,推动CNTs从"辅助导电材料"向"多功能核心材料"的战略转型,为下一代高能量密度、高安全性储能系统提供关键材料支撑与理论指导。
中图分类号:
李连平, 梁波, 侯明泰, 左昭贵. 锂离子电池用碳纳米管导电剂产业化应用研究进展[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2025.0864.
Lianping LI, Bo LIANG, Mingtai HOU, Zhaogui ZUO. Research progress on the industrial application of carbon nanotube conductive agents for lithium-ion batteries[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0864.
表2
CNTs与传统炭基导电剂的应用性能对比"
| 性能参数 | 三元正极(NCM/NCA) | 硅基负极(SiOx/C) | LFP | ASSBs | ||||
|---|---|---|---|---|---|---|---|---|
| CNTs | 传统炭基 | CNTs | 传统炭基 | CNTs | 传统炭基 | SWCNTs | 特殊导电剂 | |
| 添加量(wt%) | 0.5-1.0 | 2.0-3.0 | 1.0-1.5 | 3.0-5.0 | 0.8-1.2 | 2.0-3.0 | 0.2-0.5 | 1.5-2.5 |
| 内阻(Ω) | 8-10 | 12-15 | 10-12 | 18-22 | 5-7 | 8-10 | 8-10 | 15-18 |
| 倍率性能(%) | 105-108 | 82-85 | 105-110 | 75-78 | 102-105 | 85-88 | 115-120 | 78-82 |
| 循环寿命(次) | 1350-1450 | 800-1000 | 600-700 | 300-400 | 3500-4000 | 2500-3000 | 250-350 | 100-200 |
| 能量密度(Wh/kg) | 265-275 | 240-250 | 450-480 | 380-400 | 165-170 | 155-160 | 340-360 | 280-300 |
表4
不同正极体系中CNTs导电剂的性能对比"
| 正极类型 | CNTs类型 | 添加量(wt%) | 关键性能提升 |
|---|---|---|---|
| LFP | MWCNTs/CB复合 | 0.8-1.5 | 0.5 C容量146.32 mAh/g;循环2165周容量保持率91.78% |
| NCM | CNT-COOH/CB复合 | 0.5-1.2 | 1 C循环200次容量保持率73.8%;10 C容量保持率53.1% |
| LMO | (8,0)型SWCNTs | 0.3-0.8 | 5 C放电容量保持率提升至82%(抑制Mn溶出) |
| NMCA | COF/CNTs | 1.0-2.0 | 比容量314 mAh/g;10000次循环容量保持率88% |
| LRLO | N-S-CNTs | 1.0-2.5 | 提高导电性,改善充放电性能 |
| P0.02-nrNCM | 体相掺杂协同CNTs | - | 1 C容量166.07 mAh/g,100次循环容量保持率92.4% |
表6
CNTs导电剂的电池体系适配性"
| 电池体系 | 推荐CNTs类型 | 添加量(wt%) | 关键提升指标 | 作用机制 |
|---|---|---|---|---|
| LFP正极 | MWCNTs | 0.8-1.2 | 能量密度165-170,3C保持率>102% | 厚电极网络优化 |
| 高镍三元 | MWCNTs-COOH | 0.5-1.0 | 循环寿命>1350次,内阻8-10 Ω | CEI稳定、抑制TM溶出 |
| 硅基负极 | SWCNTs/N掺杂 | 1.0-1.5 | 容量保持>600次,膨胀率<83% | 网兜结构、Si-C键合 |
| ASSBs | SWCNTs | 0.2-0.5 | 能量密度340-360,界面阻抗<35 Ω | 离子/电子双通路 |
| LSB | Ni3V2O8@CNTs | 1.5-2.0 | 1500次循环衰减率0.0334% | 多硫化物吸附-催化 |
| SIBs | MWCNTs | 1.0-1.5 | 比容量>118 mAh/g,循环>500次 | 电子传输加速 |
| [1] | KIM J H, KIM S M, JONG H H, et al. Perspective on carbon nanotubes as conducting agent in lithium-ion batteries: the status and future challenges[J]. Carbon Letters. 2023, 33(2): 325-333. DOI: 10.1007/s42823-022-00449-0. |
| [2] | TONG Z, LV C, BAI G D, et al. A review on applications and challenges of carbon nanotubes in lithium-ion battery[J]. Carbon Energy, 2025, 7(2): 36-72. DOI: 10.1002/cey2.643. |
| [3] | 华经产业研究院. 2025-2031年中国碳纳米管导电剂行业发展监测及投资战略咨询报告[R]. 北京: 华经产业研究院, 2025. |
| Huajing Industry Research Institute. 2025-2031 China Carbon Nanotube Conductive Agent Industry Development Monitoring and Investment Strategy Advisory Report [R]. Beijing: Huajing Industry Research Institute, 2025. | |
| [4] | HE Z Y, YU X W, LV Q L, et al. Advances of carbon nanotubes in lithium-ion batteries for the era of carbon neutrality[J]. New Carbon Materials, 2025, 40(4): 766-781. DOI: 10.1016/s1872-5805(25)61020-1. |
| [5] | LIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56–58. DOI: 10.1038/354056a0. |
| [6] | 赵悠曼, 严小波, 段红坤, 等. 碳纳米管导电剂对硅碳负极锂电池性能提升的探索[J]. 储能科学与技术, 2021, 10(1): 118-127. |
| ZHAO Y M, YAN X B, DUAN H K, et al. Exploring mechanism of carbon nanotubes as conductive agent for improving performance of a silicon/carbon anode in LIB[J]. Energy Storage Science and Technology, 2021, 10(1): 118-127. | |
| [7] | 吴怡芳, 崇少坤, 柳永宁, 等. 碳纳米材料构建高性能锂离子和锂硫电池研究进展[J]. 材料工程, 2020, 48(4): 25-35. |
| WU Y F, CHONG S K, LIU Y N,et al. Research progress on carbon nano-materials to construct Li-ion and Li-S batteries of high performance[J]. Journal of Materials Engineering, 2020, 48(04): 25-35. | |
| [8] | ZHANG X, TAN W, CAREY T, et al. Enhanced composite thermal conductivity by percolated networks of in-situ confined-grown carbon nanotubes[J]. Journal of Nanoparticle Research, 2023, 16(11): 12821-12829. DOI: 10.1007/s12274-023-6209-6. |
| [9] | ZHAO Y, GUO Y Q, ZHAO X H, et al. Study on the Application of Composite Conductive Agent in Ultrafine Hollow Carbon Spheres Supercapacitors[J]. Transactions of Beijing Institute of Technology, 2022, 42(12): 1321-1328. |
| [10] | 吴程浩. 国联证券:天奈科技(688116)—国产碳管领头羊,科技为帆助启航[R].2020-11-19. |
| WU C H.GCL Securities: Tianai Technology (688116)—Leading the Domestic Carbon Nanotube Industry, Technology as the Sail to Set Sail [R]. 2020-11-19. | |
| [11] | SARA H, FILIPP O, SIMO H, et al. Optimized NMC622 electrodes with a high content of the active material: A comprehensive study[J]. Journal of Power Sources, 2024, 608: 234549. DOI: 10.1016/j.jpowsour.2024.234549. |
| [12] | 高桂红, 刘福园, 李珅珅, 等. 二元导电剂对锂浆料电池性能的影响[J]. 储能科学与技术, 2023, 12(11): 3299-3306. |
| GAO G H, LIU F Y, LI K K, et al. Effect of binary composite conductive agent on the performance of lithium slurry battery[J]. Energy Storage Science and Technology, 2023, 12(11):3299-3306. | |
| [13] | 苏国士, 梁阚, 李虓, 等. 石墨烯/碳纳米管复合导电剂制备[J]. 炭素技术, 2022, 41(01): 23-27+40. |
| SU G S, LIANG K, LI X, et al. Preparation of graphene/carbon nanotube composite conductive agent[J]. Carbon Techniques, 2022,41(1): 23-27+40. | |
| [14] | LI M H, JIANG D M, DU Z Q, et al. Green modification of single-walled carbon nanotubes dispersion with good dispersibility and long storage stability[J]. Journal of Nanoparticle Research, 2023, 25: 85. DOI: 10.1007/s11051-023-05737-y. |
| [15] | QIU K Y, YIN W J, ZHAO Y, et al. Functionalized CNTs Enhancing Conduction and Interfacial Stability via Multiple Mechanisms in Ni-Rich Cathodes[J]. Advanced Sustainable Systems, 2025, 8: 2300501. DOI: 10.1002/adsu.202500871. |
| [16] | WEI P,LI X G,HE Z M,et al. Porous N,B co-doped carbon nanotubes as efficient metal-free electrocatalysts for ORR and Zn-air batteries[J]. Chemical Engineering Journal, 2021, 422: 130134. DOI: 10.1016/j.cej.2021.130134. |
| [17] | LI S S, WANG G Y, MENG T, et al. An interconnected silicon-carbon conductive framework for dissipating mechanical strain for advanced Li-ion storage[J]. Journal of Materials Chemistry A, 2023, 11: 8745-8756. DOI: 10.1039/d3ta00388d. |
| [18] | WANG Z D, WANG X F, GAO K X, et al. Carbon coatings design to optimize electro-chemo-mechanical behavior of lithium-ion battery electrodes: A review[J]. Materials Today Energy. 2025, 52: 101951. DOI: 10.1016/j.mtener.2025.101951. |
| [19] | WANG H L, CHAO Y F, LI J Z, et al. What is the Real Origin of Single-Walled Carbon Nanotubes for the Performance Enhancement of Si-Based Anodes?[J]. Journal of the American Chemical Society, 2024, 146(25): 17041-17053. DOI: 10.1021/jacs.4c01677. |
| [20] | ZHANG Z C, CHEN Y, SHEN P Y, et al. Homochiral carbon nanotube van der Waals crystals[J]. Science. 2025, 387(6740): 1310-1316. DOI: 10.1126/science.adu1756. |
| [21] | 李婷婷. 纳米碳导电剂改善硅基负极材料性能的研究[D]. 江西理工大学, 2020. |
| LI T T. Research on improving the performance of silicon-based anode materials using nanocarbon conductive agents [D]. Jiangxi University of Science and Technology, 2020. | |
| [22] | 兴业证券经济与金融研究院.【碳纳米管行业深度】动力锂电驱动,碳纳米管需求迎来爆发[R].上海:兴业证券股份有限公司.2020-05-21. |
| Industrial Securities Research Institute. carbon nanotube industry in-depth: Power lithium batteries drive carbon nanotube demand explosion[R]. Shanghai: Industrial Securities Co., Ltd. 2020-05-21. | |
| [23] | QYResearch.2024年全球锂电池碳纳米管导电剂行业总体规模、主要企业国内外市场占有率及排名[R].上海:上海跃威信息科技有限公司.2024-10-08. |
| QYResearch. 2024 global lithium battery carbon nanotube conductive agent industry overall size, major enterprises' domestic and international market share and ranking [R]. Shanghai: Shanghai Yuewei Information Technology Co., Ltd. 2024-10-08. | |
| [24] | 刘辉, 韦昌鹏, 郭凯, 等. 一种多级气固环流反应器:CN119015989A [P]. 2024-11-26. |
| LIU H, WEI C P, GUO K, et al. Multi-stage gas-solid loop reactor: CN119015989A[P]. 2024-11-26. | |
| [25] | 贺宇飞, 段雪, 涂以奉, 等. 一种固定-流化床反应器:CN117205844A [P]. 2023-12-14. |
| HE Y F, DUAN X, TU Y F, et al. Fixed-fluidized bed reactor: CN117205844A [P]. 2023-12-14. | |
| [26] | 雷晓, 谢全利, 赵卓雅, 等. 流化床反应器:CN119034623A [P]. 2024-11-29. |
| LEI X, XIE Q L, ZHAO Z Y, et al. Fluidized Bed Reactor: CN119034623A [P]. 2024-11-29. | |
| [27] | 鄂尔多斯实验室,清华大学化工系.流化床多孔炭制备成套技术通过科技成果鉴定[EB/OL].(2024-11-28). |
| Ordos Laboratory, Department of Chemical Engineering, Tsinghua University. Fluidized Bed Porous Carbon Preparation Complete Technology Passes Scientific and Technological Achievement Appraisal [EB/OL]. (2024-11-28). | |
| [28] | 崔超婕, 骞伟中. 一种高效制备碳纳米材料的流化床系统与方法:CN117504744A [P]. 2024-02-06. |
| CUI C J, QIAN W Z. A Fluidized Bed System and Method for Efficient Preparation of Carbon Nanomaterials: CN117504744A [P]. 2024-02-06. | |
| [29] | JIANG M X, WANG Z Q, LI Z, et al. Ambient-Pressure C–C Coupling of CO2 Hydrogenation by NiFe/TiO2 Bimetallic Catalyst[J]. Journal of the American Chemical Society. 2025, 147(37): 33495-33506. DOI: 10.1021/jacs.5c07878. |
| [30] | JIANG Q Y, WU Y B, WANG F, et al. Floating Bimetallic Catalysts for Growing 30 cm-Long Carbon Nanotube Arrays with High Yields and Uniformity[J]. Advanced Materials, 2024, 36(4): 2306513. DOI: 10.1002/adma.202402257. |
| [31] | 朱满洲, 盛鸿婷, 李琳, 等. 催化剂Ag4 /TNT及其在催化CO2与炔丙胺环化反应中的应用:CN117205970B [P]. 2025-09-02. |
| ZHU M Z, SHENG H T, LI L, et al. Catalyst Ag4/TNT and its application in the cyclization reaction of catalyzing CO2 and propargylamine: CN117205970B [P]. 2025-09-02. | |
| [32] | 王铁军, 李小雨, 张浅, 等. 一种Ni-Sn@C-SDB催化剂及其应用与催化乙醇水相催化合成高碳醇的方法:CN119034756A [P]. 2024-11-29. |
| WANG T J, LI X Y, ZHANG Q, et al. Ni-Sn-coated C-SDB catalyst, application thereof and method for catalyzing aqueous-phase catalytic synthesis of high alcohols from ethanol by using Ni-Sn-coated C-SDB catalyst: CN119034756A [P]. 2024-11-29. | |
| [33] | LIU H H, GAO K J, HUA A L, et al. Strategies of modulating the microenvironment of catalytic sites for enhanced C–C coupling in photo-/electro-catalytic CO2 reduction[J]. Coordination Chemistry Reviews. 2025, 543: 216911. DOI: 10.1016/j.ccr.2025.217064. |
| [34] | HOU X J, CHEN B B, ZHAI X, et al. Creating Multivariate Metal-Organic Frameworks with Hierarchical Structures by Pseudomorphic Transformation as Long-Lasting Catalyst for CO2 Conversion[J]. ACS Sustainable Chemistry & Engineering, 2025, 13(30): 12034-12045. DOI: 10.1021/acssuschemeng.5c03486. |
| [35] | GAO Z D, JI Z H, ZHANG L L, et al. Optimizing the growth of vertically aligned carbon nanotubes by literature mining and high-throughput experiments[J]. New Carbon Materials, 2023, 38(5): 887-897. DOI: 10.1016/s1872-5805(23)60775-9. |
| [36] | 陈名海, 郭超, 邓炜, 等. 一种基于AI深度学习的自适应碳纳米管生长控制方案及系统:CN119358426B [P]. 2025-07-04. |
| CHEN M H, GUO C, DENG W, et al. An adaptive carbon nanotube growth control scheme and system based on AI deep learning: CN119358426B [P]. 2025-07-04. | |
| [37] | SONG Z H, JIN L, WEI G Y, et al. Quality consistency evaluation for carbon nanotubes[J]. Heliyon, 2025, 11(3): e42806.DOI: 10.1016/j.heliyon.2025.e42806. |
| [38] | 王万寿, 杨娟英, 侯春晓, 等. 基于电磁加热和余热回收的碳纳米管高效纯化方法及装置:CN119370833A [P]. 2025-01-28. |
| WANG W S, YANG J Y, HOU C X, et al. High-efficiency purification method and device for carbon nanotubes based on electromagnetic heating and waste heat recovery: CN119370833A [P]. 2025-01-28. | |
| [39] | BAEK I G, NYAMAA O, KIM J S, et al. Enhancing the electrochemical performance of free-standing electrodes using multi-walled carbon nanotubes functionalized with PVP/SDBS mixed dispersant[J]. Journal of Energy Storage. 2024,103: 114362. DOI: 10.1016/j.est.2024.114362. |
| [40] | WANG H H, QU Q, TIAN Q B, et al. Engineered multi-stage chemical modification of carbon nanotubes: From oxidation and reduction to silane coupling for optimal dispersion[J]. Applied Surface Science. 2025, 707: 163658. DOI: 10.1016/j.apsusc. 2025.163658. |
| [41] | WANG Y R, ZENG Z H, LIU Y, et al. Enhancing Lithium-Ion Batteries with a 3D Conductive network Silicon-Carbon Nanotube Composite Anode[J]. ACS Applied Materials & Interfaces, 2024, 16(49): 67791-67802. DOI: 10.1021/acsami.4c15909. |
| [42] | LIU S L, SUI T, XU S, et al. Strategic Regulation of Carbon Nanotube Dispersion with Triblock Copolymer Phase Domains: Insights from Molecular Simulations[J]. Chinese Journal of Polymer Science, 2025, 43: 517-532. DOI: 10.1007/s10118-025-3295-9. |
| [43] | LI W D, LIU X M, XIE Q, et al. Long-Term Cyclability of NCM-811 at High Voltages in Lithium-Ion Batteries: an In-Depth Diagnostic Study[J]. Chemistry of Materials. 2020, 32(18): 7796-7804. DOI: 10.1021/acs.chemmater.0c02398. |
| [44] | LIU X Z, CUI T Y, GAO S H, et al. Nitrogen Plasma-Assisted Functionalization of Silicon/Graphite Anodes to Enable Fast Kinetics[J]. ACS Applied Materials & Interfaces. 2022, 14(4): 5237-5246. DOI: 10.1021/acsami.1c19879. |
| [45] | ZHAI K, LI X N, FU C J, et al. Trace boron-doped porous carbon with a suitable amount of defects as anode for enhanced long-life potassium storage performance[J]. Diamond and Related Materials. 2023, 136: 109969. DOI: 10.1016/j.diamond.2023. 109969. |
| [46] | YU Y Y, YANG C, JIANG Y, et al. Robust Nitrogen/Sulfur Co-Doped Carbon Frameworks as Multifunctional Coating Layer on Si Anodes Toward Superior Lithium Storage[J]. Advanced Energy Materials. 2025,15: 2403086. DOI: 10.1002/aenm.202403086. |
| [47] | QIU X M, DUAN Y R, FAN L Z, et al. A binary-heteroatom doped 3D multimode carbonaceous hybrids for high performance quasi-solid-state sodium dual-ion batteries[J]. Carbon. 2023, 214: 118312. DOI: 10.1016/j.carbon.2023.118312. |
| [48] | YANG M L, YAO Y, CHANG M Y, et al. High Energy Density Sulfur-Rich MoS6-Based Nanocomposite for Room Temperature All-Solid-State Lithium Metal Batteries[J]. Advanced Energy Materials. 2023, 13(28): 2300962. DOI: 10.1002/aenm.2023 00962. |
| [49] | 陶静梅, 孙伟, 陈小丰, 等. 一种氮掺杂碳纳米管增强的高导电铜基复合材料的制备方法:CN116727676B [P]. 2025-08-19. |
| TAO J M, SUN W, CHEN X F, et al. Preparation Method for High-Conductivity Copper-Based Composite Material Reinforced with Nitrogen-Doped Carbon Nanotubes: CN116727676B [P]. 2025-08-19. | |
| [50] | 马春印,薛龙均,刘凤丹.一种多孔碳复合锂电池干法电极的制备方法:CN116137320B [P]. 2025-08-01. |
| MA C Y, YUE L J, LIU F D. Preparation Method for Dry-Process Electrodes of Porous Carbon Composite Lithium Batteries:CN116137320B [P]. 2025-08-01. | |
| [51] | SONG F M, WANG Z X, SUN G C, et al. In-situ CNT-loaded organic cathodes for sulfide all-solid-state Li metal batteries[J]. eTransportation, 2023, 18: 100261. DOI: 10.1016/j.etran.2023. 100261. |
| [52] | KIM D E, PARK Y J. Improving the Electrochemical Properties of LiFePO4 by Mixed-source-derived Carbon Layer[J]. Journal of Electrochemical Science and Technology. 2025, 16(4): 456-467. DOI: 10.33961/jecst.2025.00213. |
| [53] | 段龙威, 陈彬, 魏广林. 一种全固态复合干法导电剂及其制备方法:CN120600825A [P]. 2025-09-05. |
| DUAN L W, CHEN B, WEI G L. Fully Solid-State Composite Dry Process Conductive Agent and Its Preparation Method: CN120600825A [P]. 2025-09-05. | |
| [54] | 徐桂培, 刘浩, 赖洁文, 等. 干法电极技术在超级电容器和锂离子电池中的研究进展[J]. 储能科学与技术, 2025, 14(4): 1445-1460. |
| XU G P, LIU H, LAI J W, et al. Research progress on solvent-free electrode technology for supercapacitor and lithium-ion batteries[J]. Energy Storage Science and Technology, 2025, 14(4): 1445-1460. | |
| [55] | QYResearch (Beijing Hengzhou Bozhi International Information Consulting Co., Ltd.). "Global CNT (Carbon Nanotube) Conductive Paste: Market Expected to Grow Steadily at a 12.0% CAGR"[R/OL]. 2025-07-23. |
| [56] | Global Info Research.The market for CNT conductive agents in solid-state batteries is expected to grow to USD 122 million by 2031, indicating significant development trends and prospects. [R/OL]. 2025-7-31. |
| [57] | CHECKO S, JU Z Y, ZHANG B W, et al. Fast-Charging, Binder-Free Lithium Battery Cathodes Enabled via Multidimensional Conductive Networks[J]. Nano Letters. 2024, 24(5): 1695-1702. DOI: 10.1021/acs.nanolett.3c04437. |
| [58] | LIAO K M, DAI Y K, WANG H Y, et al. 3D Graphene Nanoflake/Vertically Aligned Carbon Nanotube/CoAl Layered Double Oxide Composites for High-Performance Lithium-Ion Batteries[J]. ACS Applied Energy Materials, 2025, 8(6): 3892-3903. DOI: 10.1021/acsaem.5c00164. |
| [59] | SONG Y L, LI H R, DONG K, et al. Interphase engineering via a synergistic dual-additive electrolyte strategy for high-voltage LiNi0.6Co0.2Mn0.2O2 cathode materials with enhanced cycling stability[J]. Materials Today Energy. 2025, 53: 101981. DOI: 10.1016/j.mtener.2025.101981. |
| [60] | OH M K, HWANG K B, LIM J Y, et al. Gradient doping of phosphate in Ni-rich LiNi0.6Co0.2Mn0.2O2 (NCM) and P0.02-nrNCM: A Li-ion battery cathode with enhanced electrochemical performance at high cut-off voltage[J]. Journal of Alloys and Compounds. 2025, 1035: 181491. DOI: 10.1016/j.jallcom.2025. 181491. |
| [61] | HAN Y N, WANG G R, REN X X, et al. High specific-energy lithium-rich manganese-based layered oxide cathodes: key challenges, modification strategies and future prospects[J]. New Carbon Materials. 2025, 40(3): 597-620. DOI: 10.1016/s1872-5805(25)60996-6. |
| [62] | CHEN S M, ZHAO W G, ZHENG G R et al. Engineering durable interphases for high-voltage Li-ion batteries under thermal stress[J]. National Science Review. 2025, 12(10): nwaf345. DOI: 10.1093/nsr/nwaf345. |
| [63] | CAI M Z, DONG Y H, XIE M, et al. Stalling oxygen evolution in high-voltage cathodes by lanthurization[J]. Nature Energy. 2023, 8: 159-168. DOI: 10.1038/s41560-022-01179-3. |
| [64] | ZHANG K, ZHENG Y C, YIN J H, et al. Unveiling the Influence of Formation Voltage on Li-Rich Layered Oxide Cathode[J]. Angewandte Chemie International Edition. 2025, e202515719. DOI: 10.1002/anie.202515719. |
| [65] | XU Q M, LIU Z X, JIN Y C, et al. A bipolar-type covalent organic framework on carbon nanotubes with enhanced density of redox-active sites for high-performance lithium-ion batteries[J]. Energy & Environmental Science. 2024, 17(15): 5451-5460. DOI: 10. 1039/d4ee00520a. |
| [66] | HE Z Y, ZHANG C X, ZHU Z X, et al. Advances in Carbon Nanotubes and Carbon Coatings as Conductive Networks in Silicon-based Anodes[J]. Advanced Functional Materials, 2024, 34(48): 2408285. DOI: 10.1002/adfm.202408285. |
| [67] | HE Z Y, ZHANG C X, ZHU Y K, et al. The acupuncture effect of carbon nanotubes induced by the volume expansion of silicon-based anodes[J]. Energy & Environmental Science. 2024, 17, (10): 3358-3364. DOI: 10.1039/d4ee00710g. |
| [68] | ÜNAL L, FIGGEMEIER V M, WEBER F, et al. Deciphering the Interactions of Carbon Nanotubes and Super P with Silicon and Graphite Active Materials in Silicon-Graphite Negative Electrode-Based Lithium-Ion Batteries[J]. Advanced Materials Interfaces. 2025: e00503. DOI: 10.1002/admi.202500503. |
| [69] | OCSiAl Trading (Shenzhen) Co., Ltd. Tuball™ SWCNTs for Silicon-Based Anodes [R/OL].2025-05-26. |
| [70] | DENG S P, SONG C R, LI S Y, et al. Rambutan-like Na4MnCr(PO4)3@C/CNTs as a high-energy-density cathode for sodium-ion batteries[J]. Solid State Ionics. 2024, 410: 116545. DOI: 10.1016/j.ssi.2024.116545. |
| [71] | DENG D R, SONG J X, YE Y Q, et al. Ultrahigh-Rate and Long-Cycle Sodium-Ion Batteries via Heterojunctions of Bimetallic/Monometallic Sulfides on N-Doped Carbon Nanotubes[J]. Advanced Functional Materials. 2025: e13010. DOI: 10.1002/adfm.202513010. |
| [72] | 张炳森, 陶肖, 戚聿杰, 等.一种锂硫电池正极活性材料及其制备和锂硫电池正极:CN118315566A [P]. 2024-07-09. |
| ZHANG B S, TAO X, QI Y J, et al. Positive electrode active material of lithium-sulfur battery, preparation of positive electrode active material and positive electrode of lithium-sulfur battery: CN118315566A [P]. 2024-07-09. | |
| [73] | PAN Z D, WANG Z L, RAO X Y, et al. Synergistic effect of oxygen-deficient Ni3V2O8@carbon nanotubes-modified separator for advanced lithium-sulfur batteries[J]. Rare Metals. 2024, 44: 1632-1648. DOI: 10.1007/s12598-024-03180-z. |
| [74] | MA R Q, FAN Y T, JIN Y T, et al. Construction of Elastic and Conductive Channels for High-Rate and High-Areal-Capacity Sulfur Cathodes in All-Solid-State Lithium-Sulfur Batteries[J]. Advanced Energy Materials. 2024, 14(19): 2304412. DOI: 10. 1002/aenm.202304412. |
| [1] | 谈秀雯, 李凌. 局部过热下锂电池热失控特性及其热管理研究[J]. 储能科学与技术, 2025, 14(9): 3521-3529. |
| [2] | 陈峥, 胡竞元, 赵志刚, 申江卫, 夏雪磊, 魏福星. 双体系混装电池组热特性研究及风冷散热结构优化[J]. 储能科学与技术, 2025, 14(9): 3463-3475. |
| [3] | 陈文艳, 贺瑞璘, 常建, 邓永红. 不同形态液态金属电极的储锂机制研究[J]. 储能科学与技术, 2025, 14(9): 3290-3300. |
| [4] | 邓拓, 周海平, 刘煜, 刘畅, 李梓恺, 吴孟强. 化学气相沉积法制备硅碳负极的研究进展[J]. 储能科学与技术, 2025, 14(9): 3354-3372. |
| [5] | 赵岩, 刘浩, 易宗琳, 李莉, 谢莉婧, 苏方远. FEC与VC在锂离子电池石墨负极界面行为研究[J]. 储能科学与技术, 2025, 14(9): 3249-3258. |
| [6] | 林季锦, 刘倩, 曲涛, 李京鲲, 黄东永, 朱晓庆, 巨星. 锂离子电池储能系统浸没液冷的技术经济性分析[J]. 储能科学与技术, 2025, 14(9): 3622-3635. |
| [7] | 封居强, 张成知, 陈雨杭. 基于数字孪生的高精度SOC和温度联合估计方法[J]. 储能科学与技术, 2025, 14(9): 3567-3580. |
| [8] | 白晓宇, 筵亚静, 张志荣, 孔令丽. 复合石墨锂离子电池性能研究[J]. 储能科学与技术, 2025, 14(9): 3259-3268. |
| [9] | 张磊. 锂离子电池储能电站的运行状态监测与评估[J]. 储能科学与技术, 2025, 14(9): 3538-3540. |
| [10] | 包新宇, 孔祥栋, 吕桃林, 朱志成, 韩雪冰, 来鑫, 郑岳久, 孙涛. 基于产线大数据的电池内阻预测及快速分选方法[J]. 储能科学与技术, 2025, 14(9): 3541-3551. |
| [11] | 杨斌, 杨军, 徐浪, 温浩伟, 刘登锋, 阮殿波. 电容型锂离子电池的球头压痕对其安全性研究[J]. 储能科学与技术, 2025, 14(8): 3090-3099. |
| [12] | 张腾, 常国峰. 基于单体特征参数差异的电池组热特性和热一致性研究[J]. 储能科学与技术, 2025, 14(8): 3194-3206. |
| [13] | 高蕾, 顾洪汇, 张益明, 黄伟, 陆海燕, 周琳, 顾梅嵘. 超高功率锂离子电池脉冲性能研究[J]. 储能科学与技术, 2025, 14(8): 2942-2949. |
| [14] | 徐成善, 孙烨, 杨智凯, 赵明强, 李亚伦, 冯旭宁, 王贺武, 卢兰光, 欧阳明高. 储能锂离子电池系统热失控诱发电弧研究进展[J]. 储能科学与技术, 2025, 14(8): 3037-3050. |
| [15] | 李鹏举, 陈晓宇, 谢佳, 沈佳妮, 贺益君. 锂离子电池功率状态预测方法研究进展[J]. 储能科学与技术, 2025, 14(8): 3028-3036. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||