[1] 吴小员, 沈越, 胡先罗, 等. 增程式电动汽车及其动力锂离子电池[J]. 储能科学与技术, 2014, 3(6):565-574. WU X Y, SHEN Y, HU X L, et al. Extended-range electric vehicles and their lithium-ion batteries[J]. Energy Storage Science and Technology, 2014, 3(6):565-574.
[2] 孙华君, 洪亭亭, 刘晓芳, 等. 有机无机界面修饰层改善铁酸铋薄膜太阳能电池的光伏性能[J]. 储能科学与技术, 2017, 6(6):1340-1344. SUN H J, HONG T T, LIU X F, et al. Improvement of photovoltaic properties of bismuth ferrite film based solar cell using organic and inorganic interface layers[J]. Energy Storage Science and Technology, 2017, 6(6):1340-1344.
[3] ARAUJO J, MATOS R, CONCEICAO V, et al. Impact of capacity and discharging rate on battery life time:A stochastic model to support mobile device autonomy planning[J]. Pervasive and Mobile Computing, 2017, 39:180-194.
[4] WANG Q S, PING P, ZHAO X J, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208:210-224.
[5] HOSSEIN M, HOWARD J N. Internal short circuit in Li-ion cells[J]. Journal of Power Sources, 2009, 191:568-574
[6] ZHAO R, LIU J, GU J J. A comprehensive study on Li-ion battery nail penetrations and the possible solutions[J]. Energy, 2017, 123:392-401.
[7] SANTHANAGOPALAN S, RAMADASS P, ZHANG Z M. Analysis of internal short-circuit in a lithium ion cell[J]. Journal of Power Sources, 2009, 194:550-557
[8] 张明轩, 冯旭宁, 欧阳明高, 等. 三元锂离子动力电池针刺热失控实验与建模[J]. 汽车工程, 2015, 37(7):743-750. ZHANG M X, FENG X N, OUYANG M G, et al. Experiments and modeling of nail penetration thermal runaway in a NCM Li-ion power battery[J]. Automotive Engineering, 2015, 37(7):743-750.
[9] LIANG G Z, ZHANG Y M, Han Q, et al. A novel 3D-layered electrochemical-thermal coupled model strategy for the nail penetration process simulation[J]. Journal of Power Sources, 2017, 342:836-845.
[10] FANG W F, RAMADASS P, ZHANG Z M. Study of internal short in a Li-ion cell-Ⅱ. Numerical investigation using a 3D electrochemical thermal model[J]. Journal of Power Sources, 2014, 248:1090-1098.
[11] CHIU K C, LIN C H, YEH S F, et al. An electrochemical modeling of lithium-ion battery nail penetration[J]. Journal of Power Sources, 2014, 251:254-263.
[12] ZHAO R, LIU J, GU J J. Simulation and experimental study on lithium ion battery short circuit[J]. Applied Energy, 2016, 173:29-39.
[13] LIU B H, YIN S, XU J. Integrated computation model of lithium-ion battery subject to nail penetration[J]. Applied Energy, 2016, 183:278-289.
[14] ABAZAA A, FERRARIA S, WONG H K, et al. Experimental study of internal and external short circuits of commercial automotive pouch lithium-ion cells[J]. Journal of Energy Storage, 2018, 16:211-217.
[15] ZHAO W, LUO G, WANG C Y. Modeling Internal shorting process in large-format Li-ion cells[J]. Journal of the Electrochemical Society, 2015, 162(7):A1352-A1364.
[16] FENG X N, WENG C H, OUYANG M G, et al. Online internal short circuit detection for a large format lithium ion battery[J]. Applied Energy, 2016, 161:168-180.
[17] 梁国周, 张一鸣, 田爽, 等. 锂离子电池针刺安全性研究概览[J]. 电源技术, 2016, 40(12):2472-2475. LIANG G Z, ZHANG Y M, TIAN S, et al. Nail penetration safety test of lithium-ion batteries[J]. Chinese Journal of Power Sources, 2016, 40(12):2472-2475.
[18] SATO N. Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles[J]. Journal of Power Source, 2001, 99(1/2):70-77. |