储能科学与技术 ›› 2020, Vol. 9 ›› Issue (2): 523-537.doi: 10.19799/j.cnki.2095-4239.2019.0286
姜鹏峰1, 石元盛1, 李康万1, 韩百川2, 颜立全1, 孙洋1, 卢侠1()
收稿日期:
2019-12-26
修回日期:
2020-01-05
出版日期:
2020-03-05
发布日期:
2020-03-15
通讯作者:
卢侠
E-mail:luxia3@mail.sysu.edu.cn
作者简介:
姜鹏峰(1993—),男,博士研究生,研究方向为固态锂电,E-mail:jiangpfn@163.com ;
基金资助:
JIANG Pengfeng1, SHI Yuansheng1, LI Kangwan1, HAN Baichuan2, YAN Liquan1, SUN Yang1, LU Xia1()
Received:
2019-12-26
Revised:
2020-01-05
Online:
2020-03-05
Published:
2020-03-15
Contact:
Xia LU
E-mail:luxia3@mail.sysu.edu.cn
摘要:
高安全、高能量密度以及长寿命全固态电池被视为下一代最重要的储能技术之一,而开发高性能固态电池的核心之一就是制备性能匹配的固态电解质。石榴石型的Li7La3Zr2O12 (LLZO)固态电解质因其高离子电导(室温下约10-3 S/cm)、高电化学稳定性和对正极材料及锂金属负极良好的化学稳定性,自2007年被发现之后,便被认为是颇具前景的一类固态电解质材料。本文系统地综述了LLZO在结构调控、掺杂策略、离子输运机制认识以及界面稳定策略等最新进展;总结了对富锂石榴石结构、快离子输运行为的认识过程;并系统介绍了优化正极/负极与石榴石型固体电解质界面结构,改善界面润湿性的解决思路及LLZO基固态电解质材料构筑固态电池的进展,以期为探索全固态锂离子电池的实际应用提供借鉴。
中图分类号:
姜鹏峰, 石元盛, 李康万, 韩百川, 颜立全, 孙洋, 卢侠. 固态电解质锂镧锆氧(LLZO)的研究进展[J]. 储能科学与技术, 2020, 9(2): 523-537.
JIANG Pengfeng, SHI Yuansheng, LI Kangwan, HAN Baichuan, YAN Liquan, SUN Yang, LU Xia. Recent progress on the Li7La3Zr2O12 (LLZO) solid electrolyte[J]. Energy Storage Science and Technology, 2020, 9(2): 523-537.
1 | XU K . Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2004, 104(10): 4303-4417. |
2 | ESHETU G G , GRUGEON S , LARUELLE S , et al . In-depth safety-focused analysis of solvents used in electrolytes for large scale lithium ion batteries[J]. Physical Chemistry Chemical Physics, 2013, 15(23): 9145-9155. |
3 |
JANEK J , ZEIER W G . A solid future for battery development[J]. Nature Energy, 2016, 1(9): 16141, doi: 10.1038/nenergy.2016.141 .
doi: 10.1038/nenergy.2016.141 |
4 |
MANTHIRAM A , YU X W , WANG S F . Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2(4):16103. DOI: 10.1038/natrevmats.2016.103 .
doi: 10.1038/natrevmats.2016.103 |
5 | BRUCE P G , WEST A R . The A-C conductivity of polycrystalline LISICON, Li2+2 x Zn1- x GeO4, and a model for intergranular constriction resistances[J]. Journal of the Electrochemical Society, 1983, 130: 662-669. |
6 | KANNO R , MURAYAMA M . Lithium ionic conductor thio-LISICON: The Li2S-GeS2-P2S5 system[J]. Journal of the Electrochemical Society, 2001, 148(42): A742-A746. |
7 | AONO H , SUGIMOTO E , SADAOKA N , et al . Ionic conductivity of solid electrolytes based on lithium titanium phosphate[J]. Journal of The Electrochemical Society, 1990, 137(4): 1023-1027. |
8 | MURUGAN R , THANGADURAI V , WEPPNER W . Fast lithium ion conduction in garnet-type Li7La3Zr2O12 [J]. Angewandte Chemie International Edition, 2007, 46: 7778-7781. |
9 | INAGUMA Y , CHEN L Q , ITOH M , et al . High ionic conductivity in lithium lanthanum titanate[J]. Solid State Communications, 1993, 86: 689-693. |
10 | ZHAO Y , DAEMEN L . Superionic conductivity in lithium-rich anti-perovskites[J]. Journal of the American Chemical Society, 2012, 134(36): 15042-15047. |
11 | MATSUO M , REMHOF A , MARTELLI P , et al . Complex hydrides with (BH4 -) and (NH2 -) anions as new lithium fast-ion conductors[J]. Journal of the American Chemical Society, 2009, 131(45): 16389-16391. |
12 | LUTZ H D , SCHMIDT W , HAEUSELER H . Chloride spinels: A new group of solid lithium electrolytes[J]. Journal of the Physics and Chemistry of Solids, 1981, 42(4): 287-289. |
13 | DEISEROTH H J , KONG S T , ECKERT H , et al . Li6PS5X: A class of crystalline Li-rich solids with an unusually high Li+ mobility[J]. Angewandte Chemie International Edition, 2008, 47(4): 755-758. |
14 | MIZUNO F , HAYASHI A , TADANAGA K , et al . New, highly ion-conductive crystals precipitated from Li2S-P2S5 glasses[J]. Advanced Materials, 2005, 17(7): 918-921. |
15 | KONDO S , TAKADA K , YAMAMURA Y . New lithium ion conductors based on Li2S-SiS2 system[J]. Solid State Ionics, Diffusion & Reactions, 1992, 53-56 (part-P2): 1183-1186. |
16 | ALPEN U V , RABENAU A , TALAT G H . Ionic conductivity in Li3N single crystals[J]. Applied Physics Letters, 1977, 30(12): 621-623. |
17 | YU X , BATES J B , JELLISON G E , et al . A stable thin film lithium electrolyte: Lithium phosphorus oxynitride[J]. Journal of the Electrochemical Society, 1997, 28(22): 524-532. |
18 | KNAUTH P . Inorganic solid Li ion conductors: An overview[J]. Solid State Ionics, Diffusion & Reactions, 2009, 180 (14-16): 911-916. |
19 | THANGADURAI V , PINZARU D , NARAYANAN S , et al . Fast solid-state Li ion conducting garnet-type structure metal oxides for energy storage[J]. the Journal of Physical Chemistry Letters, 2015, 6(2): 292-299. |
20 | REN Y , CHEN K , CHEN R , et al . Oxide electrolytes for lithium batteries[J]. Journal of the American Ceramic Society, 2015, 98(12): 3603-3623. |
21 | FERGUS J W . Ceramic and polymeric solid electrolytes for lithium-ion batteries[J]. Journal of Power Sources, 2010, 195(15): 4554-4569. |
22 | THANGADURAI V , NARAYANAN S , PINZARU D . Garnet-type solid-state fast Li ion conductors for Li batteries: Critical review[J]. Chemical Society Reviews, 2014, 45(34): 4714-4727. |
23 | LI Y , HAN J T , WANG C A , et al . Optimizing Li+ conductivity in a garnet framework[J]. Journal of Materials Chemistry, 2012, 22: 15357-15361. |
24 | DUAN H N , ZHENG H P , ZHOU Y , et al . Stability of garnet-type Li ion conductors: An overview[J]. Solid State Ionics, 2017, 318: 45-53. |
25 | THANGADURAI V , HOFSTETTER K . Present understanding of the stability of Li-stuffed garnets with moisture, carbon dioxide, and metallic lithium[J]. Journal of Power Sources, 2018, 390: 297-312. |
26 | WELLS A F . Structure inorganic chemistry[M].4th edition. Oxford: Clarendon Press, 1975. |
27 | KASPER H M . Series of rare earth garnets Ln3+ 3M2Li+ 3O12 (M=Te, W) [J]. Inorganic Chemistry, 1969, 8(4): 1000-1002. |
28 | THANGADURAI V , KAACK H , WEPPNER W J F . Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M=Nb, Ta) [J]. ChemInform, 2003, 34(27): 437-440. |
29 | THANGADURAI V , WEPPNER W . Li6ALa2Ta2O12 (A=Sr, Ba): Novel garnet-like oxides for fast lithium ion conduction[J]. Advanced Functional Materials, 2005, 15(1): 107-112. |
30 | MURUGAN R , THANGADURAI V , WEPPNER W . Lattice parameter and sintering temperature dependence of bulk and grain-boundary conduction of garnet-like solid Li-electrolytes[J]. Journal of the Electrochemical Society, 2008, 155: A90-A101. |
31 | KAERIYAMA A , MUNAKATA H , KAJIHARA K , et al . Evaluation of electrochemical characteristics of Li7La3Zr2O12 solid electrolyte[J]. ECS Transactions, 2009, 16: 175-180. |
32 | XU M , PARK M S , LEE J M, et al . Mechanisms of Li+ transport in garnet-type cubic Li3+ x La3M2O12, (M=Te, Nb, Zr) [J]. Physical Review B, 2012, 85(5): 3711-3711. |
33 | MEESALA Y , JENA A , CHANG H , et al . Recent advancements in Li-ion conductors for all-solid-state Li-ion batteries[J]. ACS Energy Letters, 2017, 2, (12): 2734-2751. |
34 | GEIGER C A , ALEKSEEV E , LAZIC B , et al . Crystal chemistry and stability of "Li7La3Zr2O12" garnet: A fast lithium-ion conductor[J]. Inorganic Chemistry, 2015, 42(13): 1089-1097. |
35 | AWAKA J , TAKASHIMA A , KATAOKA K , et al . Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12 [J]. Cheminform, 2011, 40(1): 60-62. |
36 | TAN J J , TIWARI A . Synthesis of cubic phase Li7La3Zr2O12 electrolyte for solid-state lithium-ion batteries[J]. Electrochemical and Solid State Letters, 2012, 15(3): A37-A9. |
37 | KOTOBUKI M , MUNAKATA H , KANAMURA K , et al . Compatibility of Li7La3Zr2O12 solid electrolyte to all-solid-state battery using Li metal anode[J]. Journal of the Electrochemical Society, 2010, 157: A1076-A1079. |
38 | CUSSEN E J . The structure of lithium garnets: Cation disorder and clustering in a new family of fast Li+ conductors[J]. Cheminform, 2006, 37(15): 412-413. |
39 | HOU H M , CHENG L , RICHARDSON T , et al . Three-dimensional elemental imaging of Li-ion solid-state electrolytes using fs-laser induced breakdown spectroscopy (LIBS)[J]. Journal of Analytical Atomic Spectrometry, 2015, 30: 2295-2302. |
40 | ADAMS S , RAO R P . Ion transport and phase transition in Li7- x La3(Zr2- x M x )O12 (M=Ta5+, Nb5+, x=0, 0.25)[J]. Journal of Materials Chemistry, 2011, 22: 1426-1434. |
41 | GEIGER C A , ALEKSEEV E , LAZIC B , et al . Crystal chemistry and stability of "Li7La3Zr2O12" garnet: A fast lithium-ion conductor[J]. Inorganic Chemistry, 2011, 50: 1089-1097. |
42 | KOKAL I I , SOMER M , NOTTEN P P , et al . Sol-gel synthesis and lithium ion conductivity of Li7La3Zr2O12 with garnet-related type structures[J]. Solid State Ionics, 2011, 185(1): 42-46. |
43 | LI Y , HAN J T , WANG C A , et al . Ionic distribution and conductivity in lithium garnet Li7La3Zr2O12 [J]. Journal of Power Sources, 2012, 209: 278-281. |
44 | XIE H , LI Y , GOODENOUGH J B . Low-temperature synthesis of Li7La3Zr2O12 with cubic garnet-type structure[J]. Materials Research Bulletin, 2012, 47(5): 1229-1232. |
45 | BUSCHMANN H , DOLLE J , BERENDTS S , et al . Structure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12” [J]. Physical Chemistry Chemical Physics, 2011, 13(43): 19378-19392. |
46 | AWAKA J , KIJIMA N , HAYAKAWA H , et al . Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure[J]. Journal of Solid State Chemistry, 2009, 182(8): 2046-2052. |
47 |
PERCIVAL J , KENDRICK E , SMITH R I , et al . Cation ordering in Li containing garnets: Synthesis and structural characterization of the tetragonal system, Li7La3Sn2O12 [J]. Dalton Transactions, 2009(26): 5177, DOI: 10.1039/b907331k .
doi: 10.1039/b907331k |
48 | WOLFENSTINE J , RANGASAMY E , ALLEN J L , et al . High conductivity of dense tetragonal Li7La3Zr2O12 [J]. Journal of Power Sources, 2012, 208: 193-196. |
49 | INADA R , KUSAKABE K , TANAKA T , et al . Synthesis and properties of Al-free Li7- x La3Zr2- x Ta x O12 garnet related oxides[J]. Solid State Ionics, 2014, 262: 568-572. |
50 | IL’INA E A , ANDREEV O L , ANTONOV B D , et al . Morphology and transport properties of the solid electrolyte Li7La3Zr2O12 prepared by the solid-state and citrate-nitrate methods[J]. Journal of Power Sources, 2012, 201: 169-173. |
51 | RANGASAMY E , WOLFENSTINE J , ALLEN J , et al . The effect of 24c-site (A) cation substitution on the tetragonal-cubic phase transition in Li7- x La3- x A x Zr2O12 garnet-based ceramic electrolyte[J]. Journal of Power Sources, 2013, 230: 261-266. |
52 | AWAKA J , TAKASHIMA A , KATAOKA K , et al . Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12 [J]. Cheminform, 2011, 40: 60-62. |
53 | XIE H , ALONSO J A , LI Y , et al . Lithium distribution in aluminum-free cubic Li7La3Zr2O12 [J]. ChemInform, 2011, 23(16): 3587-3589. |
54 | ABRAGAM A . The principles of nuclear magnetism[M]. Oxford: Clarendon Press, 1961, 28(4): 692-693. |
55 | O'CALLAGHAN M P , POWELL A S , TITMAN J J , et al . Switching on fast lithium ion conductivity in garnets: The structure and transport properties of Li3+ x Nd3Te2- x Sb x O12 [J]. Chemistry of Materials, 2008, 20(6): 2360-2369. |
56 | WÜLLEN L , ECHELMEYER T , MEYER H , et al . The mechanism of Li-ion transport in the garnet Li5La3Nb2O12 [J]. Physical Chemistry Chemical Physics, 2007, 9: 3298-3303. |
57 | WANG D , ZHONG G , PANG W K , et al . Towards Understanding the lithium transport mechanism in garnet-type solid electrolytes: Li+ ions exchanges and their mobility at octahedral/tetrahedral sites[J]. Chemistry of Materials, 2015, 27: 6650-6659. |
58 | XU M , PARK M S , LEE J M, et al . Mechanisms of Li+ transport in garnet-type cubic Li3+xLa3M2O12, (M=Te, Nb, Zr) [J]. Physical Review B, 2012, 85(5): 3711-3711. |
59 | JALEM R , YAMAMOTO Y , SHIIBA H , et al . Concerted migration mechanism in the Li ion dynamics of garnet-type Li7La3Zr2O12 [J]. Chemistry of Materials, 2013, 25(3): 425-430. |
60 | HE X F , ZHU Y Z , MO Y F . Origin of fast ion diffusion in super-ionic conductors[J]. Nature Communications, 2017, 8, 15893: doi: 10.1038/ncomms15893. |
61 | WU J F , GUO X . Origin of the low grain boundary conductivity in lithium ion conducting perovskites: Li3 x La0.67- x TiO3 [J]. Physical Chemistry Chemical Physics, 2017, 19(8): 5880-5887. |
62 | MA C , CHEN K , LIANG C , et al . Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes [J]. Energy & Environmental Science, 2014, 7(5): 1638-1642. |
63 | YU S G , SIEGEL D J . Grain boundary contributions to Li-ion transport in the solid electrolyte Li7La3Zr2O12 (LLZO) [J]. Chemistry of Materials, 2017, 29(22): doi: 10.1021/acs.chemmater.7b02805. |
64 | DOBRETSOV E A , MATEYSHINA Y G , UVAROV N F . Influence of lithium oxide excess and alumina on grain boundary resistance of Li6.75La3Zr1.75Nb0.25O12 solid electrolyte [J]. Solid State Ionics, 2016, 299: 55-59. |
65 | RANGASAMY E , WOLFENSTINE J , SAKAMOTO J . The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12 [J]. Solid State Ionics, 2012, 206: 28-32. |
66 |
THOMPSON T , SHARAFI A , JOHANNES M D , et al . A tale of two sites: On defining the carrier concentration in garnet-based ionic conductors for advanced Li batteries[J]. Advanced Energy Materials, 2015, 5(11), 1500096: doi: 10.1002/aenm.201500096 .
doi: 10.1002/aenm.201500096 |
67 | BERNSTEIN N , JOHANNES M D , HOANG K . Origin of the structural phase transition in Li7La3Zr2O12 [J]. Physical Review Letters, 2012, 109(20): 205702. |
68 | THOMPSON T , WOLFENSTINE J , ALLEN J L , et al . Tetragonal vs. cubic phase stability in Al-free Ta doped Li7La3Zr2O12 (LLZO) [J]. Journal of Materials Chemistry A, 2014, 2(33): 13431-13436. |
69 | MIARA L J , RICHARDS W D , WANG Y E , et al . First-principles studies on cation dopants and electrolyte cathode interphases for lithium garnets [J]. Chemistry of Materials, 2015, 27(11): 4040-4047. |
70 | IL’INA E A , ANDREEV O L , ANTONOV B D , et al . Morphology and transport properties of the solid electrolyte Li7La3Zr2O12 prepared by the solid-state and citrate-nitrate methods [J]. Journal of Power Sources, 2012, 201: 169-173. |
71 | RETTENWANDER D , REDHAMMER G , PREISHUBER-PFLüGL F , et al . Structural and electrochemical consequences of Al and Ga Co-substitution in Li7La3Zr2O12 solid electrolytes [J]. Chemistry of Materials, 2016, 28(7): 2384-2392. |
72 | RANGASAMY E , WOLFENSTINE J , SAKAMOTO J . The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12 [J]. Solid State Ionics, 2012, 206: 28-32. |
73 | SAKAMOTO J , RANGASAMY E , KIM H , et al . Synthesis of nano-scale fast ion conducting cubic Li7La3Zr2O12 [J]. Nanotechnology, 2013, 24(42): 424005. |
74 | WU J F , CHEN E Y , YU Y , et al . Gallium-doped Li7La3Zr2O12 garnet-type electrolytes with high lithium-ion conductivity[J]. ACS Applied Materials & Interfaces, 2017, 9(2): 1542- 1552. |
75 | BRUGGE R H , KILNER J A , AGUADERO A . Germanium as a donor dopant in garnet electrolyte [J]. Solid State Ionics, 2019, 337(154-160). |
76 | WAGNER R , REDHAMMER G J , RETTENWANDER D , et al . Fast Li-ion-conducting garnet-related Li7–3 x Fe x La3Zr2O12 with uncommon I4̅3d structure[J]. Chemistry of Materials, 2016, 28(16): 5943-5951. |
77 | RANGASAMY E , WOLFENSTINE J , ALLEN J , et al . The effect of 24c-site (A) cation substitution on the tetragonal-cubic phase transition in Li7- x La3- x A x Zr2O12 garnet-based ceramic electrolyte [J]. J. Power Sources, 2013, 230: 261-266. |
78 | DUMON A , HUANG M , SHEN Y , et al . High Li ion conductivity in strontium doped Li7La3Zr2O12 garnet [J]. Solid State Ionics, 2013, 243: 36-41. |
79 | HANC E , ZAJĄC W , MOLENDA J . Synthesis procedure and effect of Nd, Ca and Nb doping on structure and electrical conductivity of Li7La3Zr2O12 garnets [J]. Solid State Ionics, 2014, 262: 617-621. |
80 | DEVIANNAPOORANI C , SHANKAR L S , RAMAKUMAR S , et al . Investigation on lithium ion conductivity and structural stability of yttrium-substituted Li7La3Zr2O12 [J]. Ionics, 2016, 22(8): 1281-1289. |
81 | HAMAO N , KATAOKA K , KIJIMA N , et al . Synthesis, crystal structure and conductive properties of garnet-type lithium ion conductor Al-free Li7- x La3Zr2- X Ta x O12 (0 ≤ x≤ 0.6) [J]. Journal of the Ceramic Society of Japan, 2016, 124: 678-683. |
82 | OHTA S , KOBAYASHI T , ASAOKA T . High lithium ionic conductivity in the garnet-type oxide Li7- X La3(Zr2- X , Nb X )O12 (X = 0~2) [J]. J. Power Sources, 2011, 196(6): 3342-3345. |
83 | RAMAKUMAR S , SATYANARAYANA L , MANORAMA S V , et al . Structure and Li+ dynamics of Sb-doped Li7La3Zr2O12 fast lithium ion conductors[J]. Physical Chemistry Chemical Physics, 2013, 15(27): 11327-11338. |
84 | DEVIANNAPOORANI C , DHIVYA L , RAMAKUMAR S , et al . Lithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets[J]. Journal of Power Sources, 2013, 240: 18-25. |
85 | SHAO C , YU Z , LIU H , et al . Enhanced ionic conductivity of titanium doped Li7La3Zr2O12 solid electrolyte[J]. Electrochimica Acta, 2017, 225: 345-349. |
86 | DHIVYA L , JANANI N , PALANIVEL B , et al . Li+ transport properties of W substituted Li7La3Zr2O12 cubic lithium garnets[J]. AIP Advances, 2013, 3(8):082115. |
87 | LIU X , LI Y , YANG T , et al . High lithium ionic conductivity in the garnet-type oxide Li7-2 x La3Zr2- x Mo x O12 (x=0~0.3) ceramics by sol-gel method[J]. Journal of the American Ceramic Society, 2017, 100(4): 1527-1533. |
88 | SONG S , YAN B , ZHENG F , et al . Crystal structure, migration mechanism and electrochemical performance of Cr-stabilized garnet[J]. Solid State Ionics, 2014, 268: 135-139. |
89 | SONG S , CHEN B , RUAN Y , et al . Gd-doped Li7La3Zr2O12 garnet-type solid electrolytes for all-solid-state Li-ion batteries[J]. Electrochimica Acta, 2018, 270: 501-508. |
90 | JIANG Y , ZHU X , QIN S , et al . Investigation of Mg2+, Sc3+ and Zn2+ doping effects on densification and ionic conductivity of low-temperature sintered Li7La3Zr2O12 garnets [J]. Solid State Ionics, 2017, 30: 73-77. |
91 | XIE H , LI Y , HAN J , et al ., Li6La3SnMO12 (M= Sb, Nb, Ta), a family of lithium garnets with high Li-ion conductivity[J]. Journal of the Electrochemical Society, 2012, 159: 1148-1151. |
92 | ALLEN J L , WOLFENSTINE J , RANGASAMY E , et al . Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12 [J]. Journal of Power Sources, 2012, 206: 315-319. |
93 | BUANNIC L , ORAYECH B , J-MLóPEZ DEL AMO , et al . Dual substitution strategy to enhance Li+ ionic conductivity in Li7La3Zr2O12 solid electrolyte[J]. Chemistry of Materials, 2017, 29(4): 1769-1778. |
94 | YANG T , LI Y , WU W , et al . The synergistic effect of dual substitution of Al and Sb on structure and ionic conductivity of Li7La3Zr2O12 [J]. Ceramic International, 2018, 44: 1538-1544. |
95 | CHEN X , WANG T , LU W , et al . Synthesis of Ta and Ca doped Li7La3Zr2O12 solid-state electrolyte via simple solution method and its application in suppressing shuttle effect of Li-S battery [J]. Journal of Alloys and Compounds, 2018, 74: 386-394. |
96 | LI Y , YANG T , WU W , et al . Effect of Al-Mo co-doping on the structure and ionic conductivity of sol-gel derived Li7La3Zr2O12 ceramics[J]. Ionics, 2018, 24: 3305-3315. |
97 | OHTA S , SEKI J , YAGI Y , et al . Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery[J]. Journal of Power Sources, 2014, 265: 40-44. |
98 | WANG D , ZHONG G , DOLOTKO O , et al . The synergistic effects of Al and Te on the structure and Li+-mobility of garnet-type solid electrolytes[J]. Journal of Materials Chemistry A, 2014, 2(47): 20271-20279. |
99 | GU W , EZBIRI M , PRASADA RAO R , et al . Effects of penta- and trivalent dopants on structure and conductivity of Li7La3Zr2O12 [J]. Solid State Ionics, 2015, 274: 100-105. |
100 | DOBRETSOV E A , MATEYSHINA Y G , UVAROV N F . Influence of lithium oxide excess and alumina on grain boundary resistance of Li6.75La3Zr1.75Nb0.25O12 solid electrolyte[J]. Solid State Ionics, 2017, 299: 55-59. |
101 | SHEN L W , WANG L , WANG Z , et al . Preparation and characterization of Ga and Sr co-doped Li7La3Zr2O12 garnet-type solid electrolyte[J]. Solid State Ionics, 2019, 339:114992. |
102 | WU J F , PANG W K , PETERSON V K , et al . Garnet-type fast Li-ion conductors with high ionic conductivities for all-solid-state batteries[J]. ACS Applied Materials &Interfaces, 2017, 9(14): 12461-12468. |
103 | HU M , PANG X , ZHOU Z . Recent progress in high-voltage lithium ion batteries[J]. Journal of Power Sources, 2013, 237: 229-242. |
104 | DHIVYA L , MURUGAN R . Effect of simultaneous substitution of Y and Ta on the stabilization of cubic phase, microstructure, and Li+ Conductivity of Li7La3Zr2O12 lithium garnet[J]. ACS Applied Materials & Interfaces, 2014, 6(20): 17606-17615. |
105 | KIHIRA Y , OHTA S , IMAGAWA H , et al . Effect of simultaneous substitution of alkali earth metals and Nb in Li7La3Zr2O12 on lithium-ion conductivity[J]. ECS Electrochemistry Letters, 2013, 2: A56-A59. |
106 | ZEIER W G . Structural limitations for optimizing garnet-type solid electrolytes: a perspective[J]. Dalton Transactions, 2014, 43(43): 16133-16138. |
107 | MUKHOPADHYAY S , THOMPSON T , SAKAMOTO J , et al . Structure and stoichiometry in supervalent doped Li7La3Zr2O12 [J]. Chemistry of Materials, 2015, 27(10): 3658-3665. |
108 | GEIGER C A , ALEKSEEV E , LAZIC B , et al . Crystal chemistry and stability of Li7La3Zr2O12 garnet: A fast lithium-ion conductor[J]. Inorganic Chemistry, 2011, 50(3): 1089-1097. |
109 | KOTOBUKI M , KANAMURA K , SATO Y , et al . Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte[J]. Journal of Power Sources, 2011, 196(18): 7750-7754. |
110 | RETTENWANDER D , BLAHA P , LASKOWSKI R , et al . DFT study of the role of Al3+ in the fast ion-conductor Li7–3xAl3+xLa3Zr2O12 garnet[J]. Chemistry of Materials, 2014, 26(8): 2617-2623. |
111 | RETTENWANDER D , LANGER J , SCHMIDT W , et al . Site occupation of Ga and Al in stabilized cubic Li7–3(x+y)GaxAlyLa3Zr2O12 garnets as deduced from 27Al and 71Ga MAS NMR at ultrahigh magnetic fields[J]. Chemistry of Materials, 2015, 27(8): 3135-3142. |
112 | JALEM R , RUSHTON M J D , MANALASTAS W , et al . Effects of gallium doping in garnet-type Li7La3Zr2O12 solid electrolytes[J]. Chemistry of Materials, 2015, 27(8): 2821-2831. |
113 | HAN X , GONG Y , FU K , et al . Negating interfacial impedance in garnet-based solid-state Li metal batteries[J]. Nature Materials, 2017, 16(5): 572-579. |
114 | LUO W , GONG Y , ZHU Y , et al . Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer [J]. Advanced Materials, 2017, 29(22): 1606042. |
115 | SHARAFI A , KAZYAK E , DAVIS A L , et al . Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12 [J]. Chemistry of Materials, 2017, 29(18): 7961-7968. |
116 | WANG C , GONG Y , LIU B , et al . Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes[J]. Nano Letters, 2017, 17(1): 565-571. |
117 | HE M , CUI Z , CHEN C , et al . Formation of self-limited, stable and conductive interfaces between garnet electrolytes and lithium anodes for reversible lithium cycling in solid-state batteries[J]. Journal of Materials Chemistry A, 2018, 6(24): 11463-11470. |
118 | ZHAO N , FANG R , HE M H , et al . Cycle stability of lithium/garnet/lithium cells with different intermediate layers [J]. Rare Metals, 2018, 37: 473-479, 155. |
119 | DUAN J , WU W , NOLAN A M , et al . Solid-state batteries: Lithium–graphite paste: An interface compatible anode for solid-state batteries[J]. Advanced Materials, 2019, 31(10),1970068. |
120 | LI Y , CHEN X , DOLOCAN A , et al . Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries[J]. Journal of the American Chemical Society, 2018, 140(20): 6448-6455. |
121 |
INADA R , YASUDA S , HOSOKAWA H , et al . Formation and stability of interface between garnet-type Ta-doped Li7La3Zr2O12 solid electrolyte and lithium metal electrode [J]. Batteries, 2018, 4(2), 26: doi: 10.3390/batteries4020026 .
doi: 10.3390/batteries4020026 |
122 | SHARAFI A , KAZYAK E , DAVIS A L , et al . Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12 [J]. Chemistry of Materials, 2017, 29(18): 7961-7968. |
123 | LI Y , XU B , XU H , et al . Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries[J]. Angewandte Chemie International Edition, 2017, 56(3): 753-756. |
124 | OHTA S , KOBAYASHI T , SEKI J , et al . Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte [J]. Journal of Power Sources, 2012, 202: 332-335. |
125 | LIU B , FU K , GONG Y , et al . Rapid thermal annealing of cathode-garnet interface toward high-temperature solid state batteries[J]. Nano Letters, 2017, 17(8): 4917-4923. |
126 | PARK K , YU B C , JUNG J W , et al . Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: Interface between LiCoO2 and garnet-Li7La3Zr2O12 [J]. Chemistry of Materials, 2016, 28(21): 8051-8059. |
127 | FU K K , GONG Y , XU S , et al . Stabilizing the garnet solid-electrolyte/polysulfide interface in Li-S batteries [J]. Chemistry of Materials, 2017, 29(19): 8037-8041. |
128 | XIA W , XU B , DUAN H , et al . Ionic conductivity and air stability of Al-doped Li7La3Zr2O12 sintered in alumina and Pt crucibles[J]. ACS Applied Materials & Interfaces, 2016, 8(8): 5335-5342. |
129 | LIU J , GAO X , HARTLEY G O , et al . The interface between Li6.5La3Zr1.5Ta0.5O12 and liquid electrolyte[J]. Joule, 2019: doi: 10.1016/j.joule.2019.10.001. |
[1] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[2] | 魏超超, 余创, 吴仲楷, 彭林峰, 程时杰, 谢佳. Li3PS4 固态电解质的研究进展[J]. 储能科学与技术, 2022, 11(5): 1368-1382. |
[3] | 甘露雨, 陈汝颂, 潘弘毅, 吴思远, 禹习谦, 李泓. 锂电池安全性多尺度研究策略:实验与模拟方法[J]. 储能科学与技术, 2022, 11(3): 852-865. |
[4] | 刘金平, 蒲博伟, 邹喆乂, 李铭清, 丁昱清, 任元, 罗亚桥, 李杰, 李亚捷, 王达, 何冰, 施思齐. 基于蒙特卡罗模拟的离子导体热力学与动力学特性[J]. 储能科学与技术, 2022, 11(3): 878-896. |
[5] | 许卓, 郑莉莉, 陈兵, 张涛, 常修亮, 韦守李, 戴作强. 固态电池复合电解质研究综述[J]. 储能科学与技术, 2021, 10(6): 2117-2126. |
[6] | 闫汶琳, 吴凡, 李泓, 陈立泉. 含硅负极在硫化物全固态电池中的应用[J]. 储能科学与技术, 2021, 10(3): 821-835. |
[7] | 翟艳芳, 杨冠明, 侯望墅, 姚建尧, 温兆银, 宋树丰, 胡宁. 溶剂热法合成三维花瓣状石榴石型固态电解质及其在固态聚合物电解质中的应用[J]. 储能科学与技术, 2021, 10(3): 905-913. |
[8] | 张赛赛, 赵海雷. 石榴石型Li7La3Zr2O12固态锂金属电池的界面问题研究进展[J]. 储能科学与技术, 2021, 10(3): 863-871. |
[9] | 吴勰, 周莉, 薛照明. 基于螯合B类锂盐的固态聚合物电解质的合成及其性能[J]. 储能科学与技术, 2021, 10(1): 96-103. |
[10] | 孙歌, 魏芷宣, 张馨元, 陈楠, 陈岗, 杜菲. 钠离子无机固体电解质研究进展[J]. 储能科学与技术, 2020, 9(5): 1251-1265. |
[11] | 吴洁, 江小标, 杨旸, 吴勇民, 朱蕾, 汤卫平. NASICON结构Li1+xAlxTi2-x(PO4)3(0≤x≤0.5)固体电解质研究进展[J]. 储能科学与技术, 2020, 9(5): 1472-1488. |
[12] | 杨菁, 刘高瞻, 沈麟, 姚霞银. NASICON结构钠离子固体电解质及固态钠电池应用研究进展[J]. 储能科学与技术, 2020, 9(5): 1284-1299. |
[13] | 彭林峰, 贾欢欢, 丁庆, 赵宇明, 谢佳, 程时杰. 基于无机钠离子导体的固态钠电池研究进展[J]. 储能科学与技术, 2020, 9(5): 1370-1382. |
[14] | 贾曼曼, 张隆. 钠离子硫化物固态电解质研究进展[J]. 储能科学与技术, 2020, 9(5): 1266-1283. |
[15] | 屈晨滢, 侯朝霞, 王晓慧, 王健, 王凯, 李思瑶. 凝胶聚合物电解质在固态超级电容器中的研究进展[J]. 储能科学与技术, 2020, 9(3): 776-783. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||