1 |
DAVIS V K, BATES C M, OMICHI K, et al. Room-temperature cycling of metal fluoride electrodes: Liquid electrolytes for high-energy fluoride ion cells[J]. Science, 2018, 362: 1144-1148.
|
2 |
ZACHMAN M J, TU Z, CHOUDHURY S, et al. Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries[J]. Nature, 2018, 560: 345-349.
|
3 |
JUNG H G, HASSOUN J, PARK J B, et al. An improved high-performance lithium-air battery[J]. Nat Chem, 2012, 4: 579-585.
|
4 |
KERMAN K, LAI B K, RAMANATHAN S. Free standing oxide alloy electrolytes for low temperature thin film solid oxide fuel cells[J]. J Power Sources, 2012, 202: 120-125.
|
5 |
SHI J, YANG Y F, SHAO H X. Co-polymerization and blending based PEO/PMMA/P(VDF-HFP) gel polymer electrolyte for rechargeable lithium metal batteries[J]. J Membrane Science, 2018, 547: 1-10.
|
6 |
HAFNER S, GUTHREY H, LEE S H, et al. Synchronized electrospinning and electrospraying technique for manufacturing of all-solid-state lithium-ion batteries[J]. J Power Sources, 2019, 431: 17-24.
|
7 |
AmMARAL F A, SOUSA R M, MORAIS L C, et al.Preparation and characterization of the porous solid polymer electrolyte of PAN/PVA by phase inversion[J]. J Appl Electrochem, 2015, 45: 809-820.
|
8 |
XUE Z M, ZHAO J F, DING J, et al. LBDOB, a new lithium salt with benzenediolato and oxalato complexes of boron for lithium battery electrolytes[J]. J Power Sources, 2010, 195: 853-856.
|
9 |
LI X Y, XUE Z M, ZHAO J F, et al. A new lithium salt with tetrafluoro-1,2-benzenediolato and oxalato complexes of boron for lithium battery electrolytes[J]. J Power Sources, 2013, 235: 274-279.
|
10 |
XUE Z M, SUN B B, ZHOU W, et al. A new lithium salt with dihydroxybenzene and lithium tetrafluoroborate for lithium battery electrolytes[J]. J Power Sources, 2011, 196 : 8710-8713.
|
11 |
XUE Z M, JI C Q, ZHOU W, et al. A new lithium salt with 3-fluoro-1,2-benzenediolato and oxalato complexes of boron for lithium battery electrolytes[J]. J Power Sources, 2010, 195: 3689-3692.
|
12 |
XU W, ANGELLZ C A. LiBOB and its derivatives weakly coordinating anions, and the exceptional conductivity of their nonaqueous solutions[J]. Electrochemical and Solid-State Letters, 2001, 4(1): 1-4.
|
13 |
XUE Z M, ZHOU W, DING J, et al. Electronic structures and molecular properties of FLBDOB and its derivatives: A combined experimental and theoretical study[J]. Electrochimica Acta, 2010, 55: 5342-5348.
|
14 |
XUE Z M, ZHAO B H, CHEN C H. A new lithium salt with 3-fluoro-1,2-benzenediolato and lithium tetrafluoroborate for lithium battery electrolytes[J]. J Power Sources, 2011, 196: 6478-6482.
|
15 |
BARTHEL J, SCHMIDT M, GORES H J. Lithium bis[5-fluoro-2-olato-1-benzenesulfonato (2-)-O,O']borate(l-), a new anodically and cathodically stable salt for electrolytes of lithium-ion cells[J]. J Electrochem Soc, 1998, 145 (2): 17-20.
|
16 |
TANG Y N, XUE Z M, DING J, et al. Two unsymmetrical lithium organoborates with mixed-ligand of croconato and oxalicdiolato or benzenediolato for lithium battery electrolytes[J]. J Power Sources, 2012, 218: 134-139.
|
17 |
XUE Z M, ZHANG X F, ZHOU W, et al. A new lithium salt with tetrafluoro-1,2-benzenediolato and lithium tetrafluoroborate for lithium battery electrolytes[J]. Journal of Power Sources, 2012, 202: 336-340.
|
18 |
XUE Z M, ZHOU W, SUN B B , et al. Density functional theory study on LDFBDB and its derivatives: Electronic structures, energies, and molecular properties[J]. Electrochimica Acta, 2011, 56: 8770-8775.
|
19 |
DAHB M, GHAMOUSS F, TRAN-VAN F, et al. Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage[J]. J Power Sources, 2011, 196: 9743-9750.
|
20 |
ZHOU H M, FANG Z Q , LI J. LiPF6 and lithium difluoro (oxalato) borate/ethylene carbonate+dimethyl carbonate+ethyl(methyl)carbonate electrolyte for Li4Ti5O12 anode[J]. J Power Sources, 2013, 230: 148-154.
|
21 |
WILSON J S, FRAMPTON M J, MICHELS J J, et al. Supramolecular complexes of conjugated polyelectrolytes with poly(ethylene oxide): Multifunctional luminescent semiconductors exhibiting electronic and ionic transport[J]. Adv Mater, 2005, 17: 2659-2663.
|
22 |
TAO C, GAO M H, YIN B H, et al. A promising TPU/PEO blend polymer electrolyte for all-solid-state lithium ion batteries[J]. Electrochimica Acta , 2017, 257: 31-39.
|
23 |
SUN H Y, SOHN H J, YAMAMOTO O, et al. Enhanced lithium-ion transport in PEO-based composite polymer electrolytes with ferroelectric BaTiO3[J]. J Electrochemic Soc, 1999, 146 (5): 1672-1676.
|
24 |
张建军, 董甜甜, 杨金凤, 等. 全固态聚合物锂电池的科研进展、挑战与展望[J]. 储能科学与技术, 2018, 7(5): 861-868.
|
|
ZHANG J J, DONG T T, YANG J F, et al. Research progress, challenge and perspective of all-solid-state polymer lithium batteries[J]. Energy Storage Science and Technology, 2018, 7(5): 861-868.
|
25 |
杨建锋, 李林艳, 吴振岳, 等. 无机固态锂离子电池电解质的研究进展[J]. 储能科学与技术, 2019, 8(5): 829-837.
|
|
YANG J f, LI L Y, WU Z Y, et al. Progress of inorganic solid electrolyte for lithium ion batteries[J]. Energy Storage Science and Technology, 2019, 8(5): 829-837.
|
26 |
HEYL A, RISSEN J J. Electrochemical detoxification of waste water without additives using solid polymer electrolyte (SPE) technology[J]. J Appl Electrochemistry , 2006, 36: 1281-1290.
|
27 |
STEINHAUER M, DIEMANT T, HEIM C, et al. Insights into solid electrolyte interphase formation on alternative anode materials in lithium-ion batteries[J]. J Appl Electrochem, 2017, 47: 249-259.
|
28 |
TAO R, FUJINAMI T. Improvement of electrochemical properties of PEO-LiTFSI electrolyte by incorporation of boroxine polymers with different backbone lengths[J]. J Appl Electrochemistry, 2005, 35: 163-168.
|