储能科学与技术 ›› 2021, Vol. 10 ›› Issue (6): 2209-2217.doi: 10.19799/j.cnki.2095-4239.2021.0197
收稿日期:
2021-05-07
修回日期:
2021-05-24
出版日期:
2021-11-05
发布日期:
2021-11-03
作者简介:
叶晖(1998—),女,硕士研究生,研究方向为电力储能技术,E-mail:基金资助:
Hui YE(), Aikui LI(), Zhong ZHAGN
Received:
2021-05-07
Revised:
2021-05-24
Online:
2021-11-05
Published:
2021-11-03
摘要:
基于无功补偿的无功功率实时平衡是电力系统安全稳定运行的重要保障。储能变流器具有四象限运行功能,可同时输出或吸收无功及有功功率,具有调频调压功能。基于储能的无功补偿技术具有响应速度快,连续可调、规模可控等优点,适用于高比例新能源和高电力电子化的新型电力系统。本文基于储能无功补偿原理,介绍了多种拓扑结构储能变流器的无功控制策略、串并联模块化放大以及中高压级联技术等研究进展。按照储能类型和应用场景,综述了储能以及储能混合无功补偿技术的发展进程及趋势,早期储能无功补偿主要采用超导储能、超级电容器及飞轮储能等短时间尺度的储能技术,电池储能技术的发展使其在电网调压、黑启动等无功补偿领域具有应用前景。基于经济性考虑,储能与STATCOM、新能源机组协同运行实现有功无功联合调压,保障系统电压水平,改善电能质量。新能源为主的新型电力系统给予储能无功补偿技术更重要的角色。储能、新能源机组及无功补偿装置的暂态稳态协同控制是未来新能源场站无功补偿主要形态。储能与其他无功源之间的协调控制策略以及联合规划问题的求解与优化都将是储能无功补偿技术的研究重点。
中图分类号:
叶晖, 李爱魁, 张忠. 基于储能的无功补偿技术综述[J]. 储能科学与技术, 2021, 10(6): 2209-2217.
Hui YE, Aikui LI, Zhong ZHAGN. Overview of reactive power compensation technology based on energy storage[J]. Energy Storage Science and Technology, 2021, 10(6): 2209-2217.
1 | 李勇, 程汉湘, 方伟明, 等. 无功补偿装置在电力系统中的应用综述[J]. 广东电力, 2016, 29(6): 87-92. |
LI Y, CHENG H X, FANG W M, et al. Review on application of reactive power compensation devices in power systems[J]. Guangdong Electric Power, 2016, 29(6): 87-92. | |
2 | 周建丰, 顾亚琴. 无功补偿装置的发展及性能比较分析[J]. 四川电力技术, 2007, 30(4): 59-62. |
ZHOU J F, GU Y Q. Development of VAR compensation device and its performance comparison and analysis[J]. Sichuan Electric Power Technology, 2007, 30(4): 59-62. | |
3 | 赵国炫, 李辉, 鲁文军, 等. 调相机运行特性和控制策略综述[J]. 湖南电力, 2019, 39(3): 43-49. |
ZHAO G X, LI H, LU W J, et al. Overview of performance characteristics and control strategies for synchronous condenser[J]. Hunan Electric Power, 2019, 39(3): 43-49. | |
4 | 王正风. 无功功率与电力系统运行[M]. 第3版. 北京: 中国电力出版社, 2016. |
WANG Z F. Reactive power and power system operation[M]. 3ed. Beijing: China Electric Power Press, 2016. | |
5 | 杨征. 500 kW储能变流器控制技术研究[D]. 北京: 北方工业大学, 2016. |
YANG Z. Research on control technology of 500 kW power conversion system[D]. Beijing: North China University of Technology, 2016. | |
6 | 李建林, 袁晓冬, 郁正纲, 等. 利用储能系统提升电网电能质量研究综述[J]. 电力系统自动化, 2019, 43(8): 15-24. |
LI J L, YUAN X D, YU Z G, et al. Comments on power quality enhancement research for power grid by energy storage system[J]. Automation of Electric Power Systems, 2019, 43(8): 15-24. | |
7 | 杨俊, 黄际元, 黄珂琪, 等. 储能电站参与电网稳态调压的控制策略[J]. 供用电, 2020, 37(8): 68-75. |
YANG J, HUANG J Y, HUANG K Q, et al. Control strategy of energy storage power station participating in steady state voltage regulation of power grid[J]. Distribution & Utilization, 2020, 37(8): 68-75. | |
8 | 李相俊, 王上行, 惠东. 电池储能系统运行控制与应用方法综述及展望[J]. 电网技术, 2017, 41(10): 3315-3325. |
LI X J, WANG S X, HUI D. Summary and prospect of operation control and application method for battery energy storage systems[J]. Power System Technology, 2017, 41(10): 3315-3325. | |
9 | 来小康, 闫涛, 刘志波, 等. 主动配电网中储能变流器控制策略综述[J]. 电器与能效管理技术, 2016(14): 15-21. |
LAI X K, YAN T, LIU Z B, et al. Summary of control strategy of battery energy storage converter in active distribution network[J]. Electrical & Energy Management Technology, 2016(14): 15-21. | |
10 | 黄日帆. 储能变流器的设计与应用研究[D]. 郑州: 华北水利水电大学, 2020. |
HUANG R F. Design and application of energy storage converter[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2020. | |
11 | 姚修远. T-NPC三电平逆变器的软开关及并联技术研究[D]. 北京: 北京交通大学, 2015. |
YAO X Y. Research on the soft-switching and parallel techniques of T-NPC three-level inverter[D]. Beijing: Beijing Jiaotong University, 2015. | |
12 | 渠展展, 惠东, 侯朝勇, 等. 基于逆阻型NPC拓扑的三电平储能变流器设计与实现[J]. 电器与能效管理技术, 2018(24): 66-71, 90. |
QU Z Z, HUI D, HOU C Y, et al. Design and implementation of three-level neutral point clamped energy storage converter with reverse blocking IGBTs[J]. Electrical & Energy Management Technology, 2018(24): 66-71, 90. | |
13 | 周京华, 张海东, 陈亚爱, 等. 20 kW双级型T型三电平储能功率变流器研制[J]. 电力电子技术, 2018, 52(6): 78-80, 95. |
ZHOU J H, ZHANG H D, CHEN Y A, et al. Development of 20 kW two-stage T-type three-level power conversion system[J]. Power Electronics, 2018, 52(6): 78-80, 95. | |
14 | 朱强, 盛露华, 刘广财, 等. 一种改进的双向储能变流器拓扑及控制策略[J]. 电力电子技术, 2020, 54(9): 128-130. |
ZHU Q, SHENG L H, LIU G C, et al. An improved topology and control strategy of bidirectional PCS[J]. Power Electronics, 2020, 54(9): 128-130. | |
15 | 徐明, 李相俊, 贾学翠, 等. 规模化电池储能系统的无功功率控制策略研究[J]. 可再生能源, 2013, 31(7): 81-84. |
XU M, LI X J, JIA X C, et al. Research on reactive power control strategy for large-scale battery energy storage systems[J]. Renewable Energy Resources, 2013, 31(7): 81-84. | |
16 | 张红艳, 张建坡. 电池储能接入系统拓扑及其控制策略[J]. 电力科学与工程, 2018, 34(11): 14-19. |
ZHANG H Y, ZHANG J P. Research on PCS topologies and control of battery energy storage systems[J]. Electric Power Science and Engineering, 2018, 34(11): 14-19. | |
17 | 江云. 超导储能在电力系统中的应用[J]. 电工电能新技术, 1982, 1(1): 18-25. |
JIANG Y. Application of superconducting energy storage in power system[J]. Advanced Technology of Electrical Engineering and Energy, 1982, 1(1): 18-25. | |
18 | RABBANI M G, DEVOTTA J B X, ELANGOVAN S. A fuzzy set theory based control of superconductive magnetic energy storage unit to improve power system dynamic performance[J]. Electric Power Systems Research, 1997, 40(2): 107-114. |
19 | SENJYU T, KINJYO T, UEZATO K, et al. Voltage and output power stabilization of wind power generation system by smes[J]. IFAC Proceedings Volumes, 2003, 36(20): 197-202. |
20 | 鲁蓉, 张建成. 超级电容器储能系统在分布式发电系统中的应用[J]. 电力科学与工程, 2006, 22(3): 63-67. |
LU R, ZHANG J C. Application of super capacitor energy storage system to distributed generation system[J]. Electric Power Science and Engineering, 2006, 22(3): 63-67. | |
21 | 阮军鹏, 张建成, 汪娟华. 飞轮储能系统改善并网风电场稳定性的研究[J]. 电力科学与工程, 2008, 24(3): 5-8. |
RUAN J P, ZHANG J C, WANG J H. Improvement of stability of wind farms connected to power grid using flywheel energy storage system[J]. Electric Power Science and Engineering, 2008, 24(3): 5-8. | |
22 | 赵艳雷, 李海东, 张磊, 等. 基于快速储能的风电潮流优化控制系统[J]. 中国电机工程学报, 2012, 32(13): 21-28, 187. |
ZHAO Y L, LI H D, ZHANG L, et al. Wind power flow optimization and control system based on rapid energy storage[J]. Proceedings of the CSEE, 2012, 32(13): 21-28, 187. | |
23 | 黄际元, 黄珂琪, 杨俊, 等. 储能参与电网调压与动态无功支撑的协调控制策略[J]. 电器与能效管理技术, 2020(10): 77-83, 89. |
HUANG J Y, HUANG K Q, YANG J, et al. Coordination control strategy of energy storage participating in grid voltage regulation and dynamic reactive power support[J]. Electrical & Energy Management Technology, 2020(10): 77-83, 89. | |
24 | ADEWUYI O B, SHIGENOBU R, OOYA K, et al. Static voltage stability improvement with battery energy storage considering optimal control of active and reactive power injection[J]. Electric Power Systems Research, 2019, 172: 303-312. |
25 | PIRES V F, POMBO A V, LOURENÇO J M. Multi-objective optimization with post-Pareto optimality analysis for the integration of storage systems with reactive-power compensation in distribution networks[J]. Journal of Energy Storage, 2019, 24: doi: 10.1016/j.est.2019.100769. |
26 | 李军徽, 孔明, 穆钢, 等. 电力系统黑启动关键技术研究综述[J]. 南方电网技术, 2017, 11(5): 68-77. |
LI J H, KONG M, MU G, et al. Overview of researches on key technologies of power system black-start[J]. Southern Power System Technology, 2017, 11(5): 68-77. | |
27 | 李延峰, 谢冬梅. 一种配置储能电站风电场黑启动策略研究[C]//2013年中国电机工程学会年会论文集, 成都, 2013: 2507-2514. |
28 | 刘力卿, 杜平, 万玉良, 等. 储能型风电场作为局域电网黑启动电源的可行性探讨[J]. 电力系统自动化, 2016, 40(21): 210-216. |
LIU L Q, DU P, WAN Y L, et al. Feasibility discussion on using storage-based wind farm as black-start power source in local power grid[J]. Automation of Electric Power Systems, 2016, 40(21): 210-216. | |
29 | 米增强, 孙朝阳, 刘力卿, 等. 储能型风电场作为黑启动电源时电池储能系统的配置方法[J]. 电测与仪表, 2018, 55(12): 20-26, 124. |
MI Z Q, SUN Z Y, LIU L Q, et al. A configuration method of battery energy storage system when apply storage-based wind farm as black-start power source[J]. Electrical Measurement & Instrumentation, 2018, 55(12): 20-26, 124. | |
30 | 刘英培, 侯亚欣, 梁海平, 等. 一种适用于黑启动的光储联合发电系统协调控制策略[J]. 电网技术, 2017, 41(9): 2979-2986. |
LIU Y P, HOU Y X, LIANG H P, et al. A coordinated control strategy of PV battery-energy storage hybrid power system for black start[J]. Power System Technology, 2017, 41(9): 2979-2986. | |
31 | 李旭, 罗嘉, 丁勇, 等. 辅助重型燃气轮机黑启动的大容量储能系统控制技术及其应用[J/OL].中国电机工程学报, 2021. https://doi.org/10.13334/j.0258-8013.pcsee.210073. |
LI X, LUO J, DING Y, et al. Control technology and application of large-scale energy storage system assisting black start of heavy duty gas turbine[J/OL]. Proceedings of the CSEE, 2021. https://doi.org/10.13334/j.0258-8013.pcsee.210073. | |
32 | 王仕城. 电化学储能系统双向变流器技术发展[C]//第五届全国储能科学与技术大会摘要集, 武汉: 2018. |
33 | 项恩新, 王科, 关静恩, 等. 基于凸松弛的主动配电网储能与无功补偿协同规划[J]. 电力系统及其自动化学报, 2020, 32(10): 63-69. |
XIANG E X, WANG K, GUAN J E, et al. Collaborative planning for energy storage and reactive power compensation in active distribution network based on convex relaxation method[J]. Proceedings of the CSU-EPSA, 2020, 32(10): 63-69. | |
34 | 陆立民, 褚国伟, 吴雅楠, 等. 储能参与电网电压调节研究综述[J]. 电器与能效管理技术, 2019(20): 10-18. |
LU L M, CHU G W, WU Y N, et al. Summary of research on energy storage participating in grid voltage regulation[J]. Electrical & Energy Management Technology, 2019(20): 10-18. | |
35 | 张晓红, 孙丽玲. 基于STATCOM-BESS的风电场功率协调控制策略研究[J]. 电力科学与工程, 2014, 30(8): 38-44. |
ZHANG X H, SUN L L. Research on coordinated control strategy of STATCOM-BESS in wind farm[J]. Electric Power Science and Engineering, 2014, 30(8): 38-44. | |
36 | RAJU V S, PREMALATHA M, RAO K D. A novel approach for reactive power compensation in hybrid wind-battery system using distribution static compensator[J]. International Journal of Hydrogen Energy, 2019, 44(51): 27907-27920. |
37 | MAHELA O P, SHAIK A G. Power quality improvement in distribution network using DSTATCOM with battery energy storage system[J]. International Journal of Electrical Power & Energy Systems, 2016, 83: 229-240. |
38 | 刘欢欢, 符杨, 苏向敬, 等. 带蓄电池储能系统的DSTATCOM有功无功联合优化控制[J]. 电力系统自动化, 2020, 44(1): 134-141. |
LIU H H, FU Y, SU X J, et al. Joint optimization control of active and reactive power for DSTATCOM with battery energy storage system[J]. Automation of Electric Power Systems, 2020, 44(1): 134-141. | |
39 | 马进, 赵大伟, 钱敏慧, 等. 大规模新能源接入弱同步支撑直流送端电网的运行控制技术综述[J]. 电网技术, 2017, 41(10): 3112-3120. |
MA J, ZHAO D W, QIAN M H, et al. Reviews of control technologies of large-scale renewable energy connected to weakly-synchronized sending-end DC power grid[J]. Power System Technology, 2017, 41(10): 3112-3120. | |
40 | 周瑜, 李正烁. 双馈风力发电场无功支撑范围的鲁棒估计[J]. 电力系统自动化, 2021, 45(5): 86-96. |
ZHOU Y, LI Z S. Robust estimation of reactive power support range of DFIG wind farm[J]. Automation of Electric Power Systems, 2021, 45(5): 86-96. | |
41 | 黄磊, 肖铮, 闫秉科. 基于储能系统的风电场无功功率优化控制研究[J]. 陕西电力, 2015, 43(12): 15-20. |
HUANG L, XIAO Z, YAN B K. Reactive power optimization control strategy for wind farm based on energy storage system[J]. Shaanxi Electric Power, 2015, 43(12): 15-20. | |
42 | JERBI L, KRICHEN L, OUALI A. A fuzzy logic supervisor for active and reactive power control of a variable speed wind energy conversion system associated to a flywheel storage system[J]. Electric Power Systems Research, 2009, 79(6): 919-925. |
43 | 王鹏, 李方媛, 胡阳, 等. 储能型双馈风电场联合STATCOM的无功协调控制[J]. 电机与控制应用, 2021, 48(2): 64-70, 75. |
WANG P, LI F Y, HU Y, et al. Coordinated reactive power control of energy storage doubly-fed wind farm combined with STATCOM[J]. Electric Machines & Control Application, 2021, 48(2): 64-70, 75. | |
44 | KHAKI B. Joint sizing and placement of battery energy storage systems and wind turbines considering reactive power support of the system[J]. Journal of Energy Storage, 2021, 35: doi: 10.1016/j.est.2021.102264. |
[1] | 姚祯, 张琦, 王锐, 刘庆华, 王保国, 缪平. 生物质衍生碳材料在全钒液流电池电极方面的应用[J]. 储能科学与技术, 2022, 11(7): 2083-2091. |
[2] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[3] | 曾伟, 熊俊杰, 李建林, 马速良, 武亦文. 基于权重自适应鲸鱼优化算法的多能系统储能电站最优配置[J]. 储能科学与技术, 2022, 11(7): 2241-2249. |
[4] | 韩健民, 薛飞宇, 梁双印, 乔天舒. 模糊控制优化下的混合储能系统辅助燃煤机组调频仿真[J]. 储能科学与技术, 2022, 11(7): 2188-2196. |
[5] | 鲁志颖, 江杉, 李全龙, 马可心, 傅腾, 郑志刚, 刘志成, 李淼, 梁永胜, 董知非. 全钒液流电池在充电结束搁置阶段的开路电压变化[J]. 储能科学与技术, 2022, 11(7): 2046-2050. |
[6] | 冯国会, 王天雨, 王刚. 封装方式对相变水箱蓄放热性能影响模拟分析[J]. 储能科学与技术, 2022, 11(7): 2161-2176. |
[7] | 董树锋, 刘灵冲, 唐坤杰, 赵海祺, 徐成司, 林立亨. 基于Simulink和低代码控制器的储能控制实验教学方法[J]. 储能科学与技术, 2022, 11(7): 2386-2397. |
[8] | 何凤荣, 张啟文, 郭德超, 郭义敏, 郭孝东. 电极结构对(NCM+AC)/HC混合型电容器电性能的影响[J]. 储能科学与技术, 2022, 11(7): 2051-2058. |
[9] | 郭雨涵, 郁丹, 杨鹏, 王子绩, 王金涛. 基于贪婪算法的分布式储能系统容量优化配置方法[J]. 储能科学与技术, 2022, 11(7): 2295-2304. |
[10] | 袁性忠, 胡斌, 郭凡, 严欢, 贾宏刚, 苏舟. 欧盟储能政策和市场规则及对我国的启示[J]. 储能科学与技术, 2022, 11(7): 2344-2353. |
[11] | 刘国静, 李冰洁, 胡晓燕, 岳芬, 徐际强. 澳大利亚储能相关政策与电力市场机制及对我国的启示[J]. 储能科学与技术, 2022, 11(7): 2332-2343. |
[12] | 杨孝杰, 王海云, 蒋中川, 宋章华. 应用于飞轮储能的BLDC电机功率双向流动策略设计[J]. 储能科学与技术, 2022, 11(7): 2233-2240. |
[13] | 李洪涛, 张帅, 李旭东, 纪运广, 孙明旭, 李欣. 单罐式储能换热系统在热风无纺布工艺中的应用[J]. 储能科学与技术, 2022, 11(7): 2250-2257. |
[14] | 吴田, 林闽城, 海浩, 孙海渔, 温兆银, 马福元. 面向一次调频的镍氢电池系统开发[J]. 储能科学与技术, 2022, 11(7): 2213-2221. |
[15] | 徐光福, 姜淼, 王万纯, 魏阳, 侯炜. 大型储能电池短路故障分析与保护策略[J]. 储能科学与技术, 2022, 11(7): 2222-2232. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||