1 |
SUN Z Y, HAN Y, WANG Z P, et al. Detection of voltage fault in the battery system of electric vehicles using statistical analysis[J]. Applied Energy, 2022, 307: doi:10.1016/j.apenergy.2021.118172.
|
2 |
YANG R X, XIONG R, MA S X, et al. Characterization of external short circuit faults in electric vehicle Li-ion battery packs and prediction using artificial neural networks[J]. Applied Energy, 2020, 260: doi:10.1016/j.apenergy.2021.114253.
|
3 |
HU J, WEI Z B, HE H W. An online adaptive internal short circuit detection method of lithium-ion battery[J]. Automotive Innovation, 2021, 4(1): 93-102.
|
4 |
UNGUREAN L, CÂRSTOIU G, MICEA M V, et al. Battery state of health estimation: A structured review of models, methods and commercial devices[J]. International Journal of Energy Research, 2017, 41(2): 151-181.
|
5 |
周頔, 宋显华, 卢文斌, 等. 基于日常片段充电数据的锂电池健康状态实时评估方法研究[J]. 中国电机工程学报, 2019, 39(1): 105-111, 325.
|
|
ZHOU D, SONG X H, LU W B, et al. Real-time SOH estimation algorithm for lithium-ion batteries based on daily segment charging data[J]. Proceedings of the CSEE, 2019, 39(1): 105-111, 325.
|
6 |
YANG D, WANG Y J, PAN R, et al. A neural network based state-of-health estimation of lithium-ion battery in electric vehicles[J]. Energy Procedia, 2017, 105: 2059-2064.
|
7 |
WEI M, YE M, WANG Q, et al. State-of-health estimation and remaining useful life prediction of lithium-ion batteries based on extreme learning machine[J]. Journal of Physics: Conference Series, 2021, 1983(1): 012058.
|
8 |
SHEN S, SADOUGHI M, CHEN X Y, et al. A deep learning method for online capacity estimation of lithium-ion batteries[J]. Journal of Energy Storage, 2019, 25: doi:10.1016/j.est.2019.100817
|
9 |
王英楷, 张红, 王星辉. 基于1DCNN-LSTM的锂离子电池SOH预测[J]. 储能科学与技术, 2022, 11(1): 240-245.
|
|
WANG Y K, ZHANG H, WANG X H. Hybrid 1DCNN-LSTM model for predicting lithium ion battery state of health[J]. Energy Storage Science and Technology, 2022, 11(1): 240-245.
|
10 |
FAN Y X, XIAO F, LI C R, et al. A novel deep learning framework for state of health estimation of lithium-ion battery[J]. Journal of Energy Storage, 2020, 32: 25: doi:10.1016/j.est.2020.101741.
|
11 |
TSANG K M, CHAN W L. State of health detection for Lithium ion batteries in photovoltaic system[J]. Energy Conversion and Management, 2013, 65: 7-12.
|
12 |
ZHANG J A, WANG P, GONG Q R, et al. SOH estimation of lithium-ion batteries based on least squares support vector machine error compensation model[J]. Journal of Power Electronics, 2021, 21(11): 1712-1723.
|
13 |
WANG Z P, MA J, ZHANG L. State-of-health estimation for lithium-ion batteries based on the multi-island genetic algorithm and the Gaussian process regression[J]. IEEE Access, 5: 21286-21295.
|
14 |
杨胜杰, 罗冰洋, 王菁, 等. 基于差分热伏安法的锂离子电池SOH诊断[J]. 电源技术, 2021, 45(11): 1427-1430.
|
|
YANG S J, LUO B Y, WANG J, et al. State of health diagnosis for lithiumion batteries based on differential thermal voltammetry[J]. Chinese Journal of Power Sources, 2021, 45(11): 1427-1430.
|
15 |
HU X S, JIANG J C, CAO D P, et al. Battery health prognosis for electric vehicles using sample entropy and sparse Bayesian predictive modeling[J]. IEEE Transactions on Industrial Electronics, 2016, 63(4): 2645-2656.
|
16 |
HUANG Y S, QIN L L, WU G. State of health estimation based on constant current charging profiles[C]//2021 40th Chinese Control Conference (CCC). Shanghai, China. IEEE, 2021: 5899-5904.
|
17 |
王凡, 史永胜, 刘博亲, 等. 基于注意力改进BiGRU的锂离子电池健康状态估计[J]. 储能科学与技术, 2021, 10(6): 2326-2333.
|
|
WANG F, SHI Y S, LIU B Q, et al. Health state estimation of lithium-ion batteries based on attention augmented BiGRU[J]. Energy Storage Science and Technology, 2021, 10(6): 2326-2333.
|
18 |
LIU W, XU Y, FENG X. A hierarchical and flexible data-driven method for online state-of-health estimation of Li-ion battery[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 14739-14748.
|
19 |
SON S, JEONG S, KWAK E, et al. Integrated framework for SOH estimation of lithium-ion batteries using multiphysics features[J]. Energy, 2022, 238: 25: doi:10.1016/j.energy.2021.121712.
|
20 |
QU J T, LIU F, MA Y X, et al. A neural-network-based method for RUL prediction and SOH monitoring of lithium-ion battery[J]. IEEE Access, 2019, 7: 87178-87191.
|
21 |
RESHEF D N, RESHEF Y A, FINUCANE H K, et al. Detecting novel associations in large data sets[J]. Science, 2011, 334(6062): 1518-1524.
|
22 |
KOBAYASHI Y, MIYASHIRO H, YAMAZAKI A, et al. Unexpected capacity fade and recovery mechanism of LiFePO4/graphite cells for grid operation[J]. Journal of Power Sources, 2020, 449: doi:10.1016/j.jpowsour.2019.227502.
|
23 |
BANERJEE A, DUNSON D B, TOKDAR S T. Efficient Gaussian process regression for large datasets[J]. Biometrika, 2012, 100(1): 75-89.
|
24 |
佘承其, 张照生, 刘鹏, 等. 大数据分析技术在新能源汽车行业的应用综述——基于新能源汽车运行大数据[J]. 机械工程学报, 2019, 55(20): 3-16.
|
|
SHE C Q, ZHANG Z S, LIU P, et al. Overview of the application of big data analysis technology in new energy vehicle industry: Based on operating big data of new energy vehicle[J]. Journal of Mechanical Engineering, 2019, 55(20): 3-16.
|
25 |
LI Y, LIU K L, FOLEY A M, et al. Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review[J]. Renewable and Sustainable Energy Reviews, 2019, 113: doi:10.1016/j.rser.2019.109254.
|
26 |
刘健, 陈自强, 黄德扬, 等. 基于等压差充电时间的锂离子电池寿命预测[J]. 上海交通大学学报, 2019, 53(9): 1058-1065.
|
|
LIU J, CHEN Z Q, HUANG D Y, et al. Remaining useful life prediction for lithium-ion batteries based on time interval of equal charging voltage difference[J]. Journal of Shanghai Jiao Tong University, 2019, 53(9): 1058-1065.
|
27 |
XIANG M, HE Y G, ZHANG H, et al. State-of-health prognosis for lithium-ion batteries considering the limitations in measurements via maximal information entropy and collective sparse variational Gaussian process[J]. IEEE Access, 2020, 8: 188199-188217.
|