1 |
舒印彪, 张丽英, 张运洲, 等. 我国电力碳达峰、碳中和路径研究[J]. 中国工程科学, 2021, 23(6): 1-14.
|
|
SHU Y B, ZHANG L Y, ZHANG Y Z, et al. Carbon peak and carbon neutrality path for China's power industry[J]. Strategic Study of CAE, 2021, 23(6): 1-14.
|
2 |
刘洪波, 彭晓宇, 张崇, 等. 风电参与电力系统调频控制策略综述[J]. 电力自动化设备, 2021, 41(11): 81-92.
|
|
LIU H B, PENG X Y, ZHANG C, et al. Overview of wind power participating in frequency regulation control strategy for power system[J]. Electric Power Automation Equipment, 2021, 41(11): 81-92.
|
3 |
张程铭, 柳璐, 程浩忠, 等. 考虑频率安全的电力系统规划与运行优化研究综述与展望[J]. 电网技术, 2022, 46(1): 250-265.
|
|
ZHANG C M, LIU L, CHENG H Z, et al. Review and prospects of planning and operation optimization for electrical power systems considering frequency security[J]. Power System Technology, 2022, 46(1): 250-265.
|
4 |
陈海生, 刘畅, 徐玉杰, 等. 储能在碳达峰碳中和目标下的战略地位和作用[J]. 储能科学与技术, 2021, 10(5): 1477-1485.
|
|
CHEN H S, LIU C, XU Y J, et al. The strategic position and role of energy storage under the goal of carbon peak and carbon neutrality[J]. Energy Storage Science and Technology, 2021, 10(5): 1477-1485.
|
5 |
唐亮, 尹小波, 吴候福, 等. 电化学储能产业发展对安全标准的需求[J]. 储能科学与技术, 2022, 11(8): 2645-2652.
|
|
TANG L, YIN X B, WU H F, et al. Demand for safety standards in the development of the electrochemical energy storage industry[J]. Energy Storage Science and Technology, 2022, 11(8): 2645-2652.
|
6 |
陈海生, 李泓, 马文涛, 等. 2021年中国储能技术研究进展[J]. 储能科学与技术, 2022, 11(3): 1052-1076.
|
|
CHEN H S, LI H, MA W T, et al. Research progress of energy storage technology in China in 2021[J]. Energy Storage Science and Technology, 2022, 11(3): 1052-1076.
|
7 |
戴兴建, 魏鲲鹏, 张小章, 等. 飞轮储能技术研究五十年评述[J]. 储能科学与技术, 2018, 7(5): 765-782.
|
|
DAI X J, WEI K P, ZHANG X Z, et al. A review on flywheel energy storage technology in fifty years[J]. Energy Storage Science and Technology, 2018, 7(5): 765-782.
|
8 |
涂伟超, 李文艳, 张强, 等. 飞轮储能在电力系统的工程应用[J]. 储能科学与技术, 2020, 9(3): 869-877.
|
|
TU W C, LI W Y, ZHANG Q, et al. Engineering application of flywheel energy storage in power system[J]. Energy Storage Science and Technology, 2020, 9(3): 869-877.
|
9 |
何林轩, 李文艳. 飞轮储能辅助火电机组一次调频过程仿真分析[J]. 储能科学与技术, 2021, 10(5): 1679-1686.
|
|
HE L X, LI W Y. Simulation of the primary frequency modulation process of thermal power units with the auxiliary of flywheel energy storage[J]. Energy Storage Science and Technology, 2021, 10(5): 1679-1686.
|
10 |
隋云任, 梁双印, 黄登超, 等. 飞轮储能辅助燃煤机组调频动态过程仿真研究[J]. 中国电机工程学报, 2020, 40(8): 2597-2606.
|
|
SUI Y R, LIANG S Y, HUANG D C, et al. Simulation study on frequency modulation process of coal burning plants with auxiliary of flywheel energy storage[J]. Proceedings of the CSEE, 2020, 40(8): 2597-2606.
|
11 |
罗耀东, 田立军, 王垚, 等. 飞轮储能参与电网一次调频协调控制策略与容量优化配置[J]. 电力系统自动化, 2022, 46(9): 71-82.
|
|
LUO Y D, TIAN L J, WANG Y, et al. Coordinated control strategy and optimal capacity configuration for flywheel energy storage participating in primary frequency regulation of power grid[J]. Automation of Electric Power Systems, 2022, 46(9): 71-82.
|
12 |
李树胜, 王佳良, 李光军, 等. MW级飞轮阵列在风光储能基地示范应用[J]. 储能科学与技术, 2022, 11(2): 583-592.
|
|
LI S S, WANG J L, LI G J, et al. Demonstration applications in wind solar energy storage field based on MW flywheel array system[J]. Energy Storage Science and Technology, 2022, 11(2): 583-592.
|
13 |
陈玉龙, 武鑫, 滕伟, 等. 用于风电功率平抑的飞轮储能阵列功率协调控制策略[J]. 储能科学与技术, 2022, 11(2): 600-608.
|
|
CHEN Y L, WU X, TENG W, et al. Power coordinated control strategy of flywheel energy storage array for wind power smoothing[J]. Energy Storage Science and Technology, 2022, 11(2): 600-608.
|
14 |
刘颖明, 徐中民, 王晓东. 考虑飞轮储能的风电场有功功率平滑控制[J]. 储能科学与技术, 2015, 4(2): 194-197.
|
|
LIU Y M, XU Z M, WANG X D. Power smoothing control for wind farms using flywheel based energy storage[J]. Energy Storage Science and Technology, 2015, 4(2): 194-197.
|
15 |
梁恺, 彭晓涛, 秦世耀, 等. 基于协同控制优化风储系统频率响应的策略研究[J]. 中国电机工程学报, 2021, 41(8): 2628-2641.
|
|
LIANG K, PENG X T, QIN S Y, et al. Study on synergetic control strategy for optimizing frequency response of wind farm augmented with energy storage system[J]. Proceedings of the CSEE, 2021, 41(8): 2628-2641.
|
16 |
张剑云, 李明节. 新能源高渗透的电力系统频率特性分析[J]. 中国电机工程学报, 2020, 40(11): 3498-3507.
|
|
ZHANG J Y, LI M J. Analysis of the frequency characteristic of the power systems highly penetrated by new energy generation[J]. Proceedings of the CSEE, 2020, 40(11): 3498-3507.
|
17 |
董天翔, 翟保豫, 李星, 等. 风储联合系统参与频率响应的优化控制策略[J]. 电网技术, 2022, 46(10): 3980-3989.
|
|
DONG T X, ZHAI B Y, LI X, et al. Optimal control strategy for combined wind-storage system to participate in frequency response[J]. Power System Technology, 2022, 46(10): 3980-3989.
|
18 |
苗福丰, 唐西胜, 齐智平. 风储联合调频下的电力系统频率特性分析[J]. 高电压技术, 2015, 41(7): 2209-2216.
|
|
MIAO F F, TANG X S, QI Z P. Analysis of frequency characteristics of power system based on wind farm-energy storage combined frequency regulation[J]. High Voltage Engineering, 2015, 41(7): 2209-2216.
|
19 |
LEE D J, WANG L. Small-signal stability analysis of an autonomous hybrid renewable energy power generation/energy storage system part I: Time-domain simulations[J]. IEEE Transactions on Energy Conversion, 2008, 23(1): 311-320.
|
20 |
颜湘武, 张伟超, 崔森, 等. 基于虚拟同步机的电压源逆变器频率响应时域特性和自适应参数设计[J]. 电工技术学报, 2021, 36(S1): 241-254.
|
|
YAN X W, ZHANG W C, CUI S, et al. Frequency response characteristics and adaptive parameter tuning of voltage-sourced converters under VSG control[J]. Transactions of China Electrotechnical Society, 2021, 36(S1): 241-254.
|