1 |
IKONEN T, NISSINEN T, POHJALAINEN E, et al. Electrochemically anodized porous silicon: Towards simple and affordable anode material for Li-ion batteries[J]. Scientific Reports, 2017, 7: 7880.
|
2 |
ZHANG Y, ZHANG X G, ZHANG H L, et al. Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries[J]. Electrochimica Acta, 2006, 51(23): 4994-5000.
|
3 |
TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
|
4 |
DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935.
|
5 |
JIA H P, ZHENG J M, SONG J H, et al. A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries[J]. Nano Energy, 2018, 50: 589-597.
|
6 |
YU C L, TIAN X H, XIONG Z C, et al. High stability of sub-micro-sized silicon/carbon composites using recycling Silicon waste for lithium-ion battery anode[J]. Journal of Alloys and Compounds, 2021, 869: doi: 10.1016/j.jallcom.2021.159124.
|
7 |
HOELTGEN C, LEE J E, JANG B Y. Stepwise carbon growth on Si/SiOx core-shell nanoparticles and its effects on the microstructures and electrochemical properties for high-performance lithium-ion battery's anode[J]. Electrochimica Acta, 2016, 222: 535-542.
|
8 |
CHO M K, YOU S J, WOO J G, et al. Anomalous Si-based composite anode design by densification and coating strategies for practical applications in Li-ion batteries[J]. Composites Part B: Engineering, 2021, 215: doi: 10.1016/j.compositesb.2021.108799.
|
9 |
PENG J, LUO J, LI W W, et al. Insight into the performance of the mesoporous structure SiOx nanoparticles anchored on carbon fibers as anode material of lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2021, 880: doi: 10.1016/j.jelechem. 2020.114798.
|
10 |
HSIEH C C, LIN Y G, CHIANG C L, et al. Carbon-coated porous Si/C composite anode materials via two-step etching/coating processes for lithium-ion batteries[J]. Ceramics International, 2020, 46(17): 26598-26607.
|
11 |
LV R T, CUI T X, JUN M S, et al. Open-ended, N-doped carbon nanotube-graphene hybrid nanostructures as high-performance catalyst support[J]. Advanced Functional Materials, 2011, 21(5): 999-1006.
|
12 |
ZAMFIR M R, NGUYEN H T, MOYEN E, et al. Silicon nanowires for Li-based battery anodes: A review[J].Journal of Materials Chemistry A, 2013, 1(34): doi: 10.1039/c3ta11714f.
|
13 |
FENG X J, CUI H M, MIAO R R, et al. Nano/micro-structured silicon@carbon composite with buffer void as anode material for lithium ion battery[J]. Ceramics International, 2016, 42(1): 589-597.
|
14 |
袁开军, 江治, 李疏芬, 周允基. 聚氨酯弹性体的热分解动力学研究[J]. 应用化学, 2005, 22(8): 861-864.
|
|
YUAN K J, JIANG Z, LI S F, et al. Kinetics of thermal degradation of polyurethane elastomers[J]. Chinese Journal of Applied Chemistry, 2005, 22(8): 861-864.
|
15 |
BRANCA C, DI BLASI C, CASU A, et al. Reaction kinetics and morphological changes of a rigid polyurethane foam during combustion[J]. Thermochimica Acta, 2003, 399(1/2): 127-137.
|
16 |
WANG H, WANG L F, WANG L C, et al. Phosphorus particles embedded in reduced graphene oxide matrix to enhance capacity and rate capability for capacitive potassium-ion storage[J]. Chemistry-A European Journal, 2018, 24(52): 13897-13902.
|
17 |
JU Z C, LI P Z, MA G Y, et al. Few layer nitrogen-doped graphene with highly reversible potassium storage[J]. Energy Storage Materials, 2018, 11: 38-46.
|
18 |
LI Z L, ZHAO H L, LV P P, et al. Watermelon-like structured SiOx-TiO2@C nanocomposite as a high-performance lithium-ion battery anode[J]. Advanced Functional Materials, 2018, 28(31): doi: 10.1002/adfm.201605711.
|
19 |
WANG X R, LIU J Y, LIU Z W, et al. Identifying the key role of pyridinic-N-co bonding in synergistic electrocatalysis for reversible ORR/OER[J]. Advanced Materials, 2018, 30(23): doi: 10.1002/adma.201800005.
|
20 |
MADHAN KUMAR A, SURESH BABU R, OBOT I B, et al. Fabrication of nitrogen doped graphene oxide coatings: Experimental and theoretical approach for surface protection[J]. RSC Advances, 2015, 5(25): 19264-19272.
|
21 |
TAN Z Q, NI K, CHEN G X, et al. Incorporating pyrrolic and pyridinic nitrogen into a porous carbon made from C60 molecules to obtain superior energy storage[J]. Advanced Materials, 2017, 29(8): doi: 10.1002/adma.201603414.
|
22 |
HEUBNER C, SCHNEIDER M, MICHAELIS A. Diffusion-limited C-rate: A fundamental principle quantifying the intrinsic limits of Li-ion batteries[J]. Advanced Energy Materials, 2020, 10(2): doi: 10.1002/aenm.201902523.
|
23 |
ZHOU X Y, TANG J J, YANG J, et al. Silicon@carbon hollow core-shell heterostructures novel anode materials for lithium ion batteries[J]. Electrochimica Acta, 2013, 87: 663-668.
|
24 |
EIN-ELI Y. A new perspective on the formation and structure of the solid electrolyte interface at the graphite anode of Li-ion cells[J]. Electrochemical and Solid-State Letters, 1999, 2(5): doi: 10.1149/1.1390787.
|
25 |
XU C, WANG B Y, LUO H, et al. Embedding silicon in pinecone-derived porous carbon as a high-performance anode for lithium-ion batteries[J]. ChemElectroChem, 2020, 7(13): 2889-2895.
|
26 |
WANG J, POLLEUX J, LIM J, et al. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles[J]. The Journal of Physical Chemistry C, 2007, 111(40): 14925-14931.
|
27 |
SIMON P, GOGOTSI Y, DUNN B. Where do batteries end and supercapacitors begin? [J]. Science, 2014, 343(6176): 1210-1211.
|