储能科学与技术 ›› 2023, Vol. 12 ›› Issue (1): 263-277.doi: 10.19799/j.cnki.2095-4239.2022.0428

• 储能测试与评价 • 上一篇    下一篇

锂离子电池无损析锂检测研究进展

邓林旺1(), 冯天宇1(), 舒时伟1, 郭彬1, 张子峰2   

  1. 1.深圳市比亚迪锂电池有限公司坑梓分公司
    2.弗迪动力有限公司,广东 深圳 518122
  • 收稿日期:2022-07-29 修回日期:2022-09-30 出版日期:2023-01-05 发布日期:2023-02-08
  • 通讯作者: 冯天宇 E-mail:deng.linwang@fdbatt.com;feng.tianyu@fdbatt.com
  • 作者简介:邓林旺(1982—),男,本科,工程师,研究方向为储能及新能源汽车电池管理系统(BMS)的新技术研究、系统开发、软硬件研发、制造生产、组织管理等,E-mail:deng.linwang@fdbatt.com

Nondestructive lithium plating online detection for lithium-ion batteries: A review

Linwang DENG1(), Tianyu FENG1(), Shiwei SHU1, Bin GUO1, Zifeng ZHANG2   

  1. 1.Shenzhen BYD Lithium Battery Co. , Ltd. Kengzi Branch
    2.FinDreams Powertrain Co. , Ltd. , Shenzhen 518122, Guangdong, China
  • Received:2022-07-29 Revised:2022-09-30 Online:2023-01-05 Published:2023-02-08
  • Contact: Tianyu FENG E-mail:deng.linwang@fdbatt.com;feng.tianyu@fdbatt.com

摘要:

人们对新能源汽车快速充电的需求与现有纯电动汽车的充电效率之间的矛盾将会越来越突出。锂离子电池在正常充电速率下,锂离子嵌入石墨负极;当充电倍率逐渐增大时,金属锂来不及嵌入石墨层状结构时便会沉积在石墨颗粒表面,出现“析锂”现象。当析锂现象随时间慢慢累积后,电池容量渐渐降低,严重时甚至会发生热失控事件。在锂电池早期发展阶段,检测析锂非常具有挑战性,且主要基于拆解电池后的形貌检测,这类检测方法对电芯造成了不可逆的损坏,无论是在后期研究还是实际应用中都是非常不友好的方式。近年来,研究人员已经提出了许多无损(即非拆解的方式)析锂检测方法,本文综述了无损析锂检测的方法,将其分为四类:①基于锂引起电芯老化的检测方法;②基于锂引起阻抗变化的检测方法;③基于锂引起电化学反应的检测方法;④基于锂引起电芯物理化学特性变化的检测方法。本文系统地对现有的无损析锂检测方法的原理、优缺点进行了概述,并对目前无损析锂检测方法进行了总结与展望,以提出这一不断发展的研究领域的技术现状和当前的研究空白。

关键词: 析锂检测, 无损检测, 在线检测, 锂离子电池, 电池安全

Abstract:

The contradiction between people's demand for fast charging of new energy vehicles and the charging efficiency of existing pure electric vehicles will become more and more prominent. At the standard charging rate of a lithium-ion battery, lithium ions are embedded in the negative graphite electrode. When the charging rate is gradually increased, metal lithium will be deposited on the surface of graphite particles when it is too late to be embedded in the layered graphite structure, resulting in the phenomenon of "lithium plating." The battery capacity gradually decreases due to the lithium plating phenomena; in extreme circumstances, thermal runaway events can also occur. In the early development stage of lithium batteries, the detection of lithium precipitation was very challenging, and it was mainly based on morphology detection after dismantling the battery. This detection method causes irreversible damage to the battery cells, both in later research and practical applications. It is a very unfriendly way. Researchers have recently proposed many nondestructive (that is, nondismantling) detection methods for lithium precipitation. This study summarizes the nondestructive detection methods of lithium precipitation, which are divided into four categories: ①a detection method based on lithium-induced cell aging methods; ②a detection method based on lithium-induced impedance changes; ③a detection method based on lithium-induced electrochemical reactions; ④a detection method based on lithium-induced changes in physical and chemical properties of cells. We provide a systematic assessment of the principles, advantages, and disadvantages of existing nondestruction lithium detection methods and summarize and prospect the current nondestruction lithium detection methods to emphasize the technological status and present state of the art in this growing research field.

Key words: lithium plating detection, nondestructive detection, online detection, lithium-ion battery, battery safety

中图分类号: