储能科学与技术 ›› 2023, Vol. 12 ›› Issue (1): 263-277.doi: 10.19799/j.cnki.2095-4239.2022.0428
邓林旺1(), 冯天宇1(), 舒时伟1, 郭彬1, 张子峰2
收稿日期:
2022-07-29
修回日期:
2022-09-30
出版日期:
2023-01-05
发布日期:
2023-02-08
通讯作者:
冯天宇
E-mail:deng.linwang@fdbatt.com;feng.tianyu@fdbatt.com
作者简介:
邓林旺(1982—),男,本科,工程师,研究方向为储能及新能源汽车电池管理系统(BMS)的新技术研究、系统开发、软硬件研发、制造生产、组织管理等,E-mail:deng.linwang@fdbatt.com;
Linwang DENG1(), Tianyu FENG1(), Shiwei SHU1, Bin GUO1, Zifeng ZHANG2
Received:
2022-07-29
Revised:
2022-09-30
Online:
2023-01-05
Published:
2023-02-08
Contact:
Tianyu FENG
E-mail:deng.linwang@fdbatt.com;feng.tianyu@fdbatt.com
摘要:
人们对新能源汽车快速充电的需求与现有纯电动汽车的充电效率之间的矛盾将会越来越突出。锂离子电池在正常充电速率下,锂离子嵌入石墨负极;当充电倍率逐渐增大时,金属锂来不及嵌入石墨层状结构时便会沉积在石墨颗粒表面,出现“析锂”现象。当析锂现象随时间慢慢累积后,电池容量渐渐降低,严重时甚至会发生热失控事件。在锂电池早期发展阶段,检测析锂非常具有挑战性,且主要基于拆解电池后的形貌检测,这类检测方法对电芯造成了不可逆的损坏,无论是在后期研究还是实际应用中都是非常不友好的方式。近年来,研究人员已经提出了许多无损(即非拆解的方式)析锂检测方法,本文综述了无损析锂检测的方法,将其分为四类:①基于锂引起电芯老化的检测方法;②基于锂引起阻抗变化的检测方法;③基于锂引起电化学反应的检测方法;④基于锂引起电芯物理化学特性变化的检测方法。本文系统地对现有的无损析锂检测方法的原理、优缺点进行了概述,并对目前无损析锂检测方法进行了总结与展望,以提出这一不断发展的研究领域的技术现状和当前的研究空白。
中图分类号:
邓林旺, 冯天宇, 舒时伟, 郭彬, 张子峰. 锂离子电池无损析锂检测研究进展[J]. 储能科学与技术, 2023, 12(1): 263-277.
Linwang DENG, Tianyu FENG, Shiwei SHU, Bin GUO, Zifeng ZHANG. Nondestructive lithium plating online detection for lithium-ion batteries: A review[J]. Energy Storage Science and Technology, 2023, 12(1): 263-277.
表1
不同无损析锂检测方法对比"
检测方法 | 电芯 | BMS应用可行性 | 检测时间 | 量化析锂 | 参考文献 | |
---|---|---|---|---|---|---|
基于锂引起电芯老化的检测方法 | 阿仑尼乌斯曲线法 | Li x Ni1/3Mn1/3Co1/3O2/Li y Mn2O4混合正极和石墨负极的商用18650型电池 | 否 | 长 | 否 | [ |
库仑效率法 | Li[Ni1/3Mn1/3Co1/3]O2/石墨软包 | 否 | 长 | 否 | [ | |
基于锂引起阻抗变化的检测方法 | 阻抗-容量法 | 三元18650型电芯 | 是 | 长 | 否 | [ |
电荷转移阻抗检测法 | NCA/石墨电池 | 是 | 短 | 是 | [ | |
基于锂引起电化学 反应的检测方法 | 负极电位测量法 | 特制三电极电芯 | 是 | 是 | 是 | [ |
小电流放电法 | LFP | 否 | 短 | 是 | [ | |
电压弛豫法 | LFP | 是 | 短 | 是 | [ | |
动态放电检测法 | 三元电芯 | 是 | 短 | 是 | [ | |
电化学阻抗谱分析法 | LFP | 否 | 短 | 否 | [ | |
弛豫时间分布法 | LCO | 否 | 长 | 是 | [ | |
非线性频谱响应分析法 | NMC | 否 | 短 | 是 | [ | |
基于锂引起电芯物理化学特性变化的检测方法 | 厚度测量法 | 软包电芯 | 否 | 长 | 否 | [ |
超声波检测法 | 软包电芯 | 否 | 长 | 否 | [ | |
H2检测法 | 非硬壳类电芯 | 否 | 长 | 否 | [ |
1 | 许晓雄, 邱志军, 官亦标, 等. 全固态锂电池技术的研究现状与展望[J]. 储能科学与技术, 2013, 2(4): 331-341. |
XU X X, QIU Z J, GUAN Y B, et al. All-solid-state lithium-ion batteries: State-of-the-art development and perspective[J]. Energy Storage Science and Technology, 2013, 2(4): 331-341. | |
2 | 朱振东, 吴欢欢, 张峥, 等. 锂离子电池析锂及析锂回嵌行为的三电极分析[J]. 储能科学与技术, 2021, 10(2): 448-453. |
ZHU Z D, WU H H, ZHANG Z, et al. Analysis of lithium plating-stripping process in lithium-ion batteries by three-electrode measurements[J]. Energy Storage Science and Technology, 2021, 10(2): 448-453. | |
3 | OSAKA T, HOMMA T, MOMMA T, et al. In situ observation of lithium deposition processes in solid polymer and gel electrolytes[J]. Journal of Electroanalytical Chemistry, 1997, 421(1/2): 153-156. |
4 | CROWTHER O, WEST A C. Effect of electrolyte composition on lithium dendrite growth[J]. Journal of the Electrochemical Society, 2008, 155(11): doi: 10.1149/1.2969424. |
5 | BIEKER G, WINTER M, BIEKER P. Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode[J]. Physical Chemistry Chemical Physics: PCCP, 2015, 17(14): 8670-8679. |
6 | STEIGER J, RICHTER G, WENK M, et al. Comparison of the growth of lithium filaments and dendrites under different conditions[J]. Electrochemistry Communications, 2015, 50: 11-14. |
7 | GHASSEMI H, AU M, CHEN N, et al. Real-time observation of lithium fibers growth inside a nanoscale lithium-ion battery[J]. Applied Physics Letters, 2011, 99(12): doi: 10.1063/1.3643035. |
8 | LIU X H, ZHONG L, ZHANG L Q, et al. Lithium fiber growth on the anode in a nanowire lithium ion battery during charging[J]. Applied Physics Letters, 2011, 98(18): doi: 10.1063/1.3585655. |
9 | ARAI J, OKADA Y, SUGIYAMA T, et al. In situ solid State7Li NMR observations of lithium metal deposition during overcharge in lithium ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(6): doi: 10.1149/2.0411506jes. |
10 | BHATTACHARYYA R, KEY B, CHEN H L, et al. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries[J]. Nature Materials, 2010, 9(6): 504-510. |
11 | DOWNIE L E, KRAUSE L J, BURNS J C, et al. In situ detection of lithium plating on graphite electrodes by electrochemical calorimetry[J]. Journal of the Electrochemical Society, 2013, 160(4): doi: 10.1149/2.049304jes. |
12 | ZINTH V, VON LÜDERS C, HOFMANN M, et al. Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction[J]. Journal of Power Sources, 2014, 271: 152-159. |
13 | BURNS J C, STEVENS D A, DAHN J R. In-situ detection of lithium plating using high precision coulometry[J]. Journal of the Electrochemical Society, 2015, 162(6): doi: 10.1149/2.0621506jes. |
14 | ANSEÁN D, DUBARRY M, DEVIE A, et al. Operando lithium plating quantification and early detection of a commercial LiFePO4 cell cycled under dynamic driving schedule[J]. Journal of Power Sources, 2017, 356: 36-46. |
15 | PETZL M, DANZER M A. Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries[J]. Journal of Power Sources, 2014, 254: 80-87. |
16 | SCHINDLER S, BAUER M, PETZL M, et al. Voltage relaxation and impedance spectroscopy as in-operando methods for the detection of lithium plating on graphitic anodes in commercial lithium-ion cells[J]. Journal of Power Sources, 2016, 304: 170-180. |
17 | VON LÜDERS C, ZINTH V, ERHARD S V, et al. Lithium plating in lithium-ion batteries investigated by voltage relaxation and in situ neutron diffraction[J]. Journal of Power Sources, 2017, 342: 17-23. |
18 | KOLETI U R, DINH T Q, MARCO J. A new on-line method for lithium plating detection in lithium-ion batteries[J]. Journal of Power Sources, 2020, 451: doi: 10.1016/j.jpowsour.2020.227798. |
19 | PETZL M, KASPER M, DANZER M A. Lithium plating in a commercial lithium-ion battery-A low-temperature aging study[J]. Journal of Power Sources, 2015, 275: 799-807. |
20 | HARTING N, WOLFF N, KREWER U. Identification of lithium plating in lithium-ion batteries using nonlinear frequency response analysis (NFRA)[J]. Electrochimica Acta, 2018, 281: 378-385. |
21 | ZHANG S S, XU K, JOW T R. Study of the charging process of a LiCoO2-based Li-ion battery[J]. Journal of Power Sources, 2006, 160(2): 1349-1354. |
22 | WU M S, CHIANG P C J, LIN J C. Electrochemical investigations on advanced lithium-ion batteries by three-electrode measurements[J]. Journal of the Electrochemical Society, 2005, 152(1): doi: 10.1149/1.1825385. |
23 | WALDMANN T, WILKA M, KASPER M, et al. Temperature dependent ageing mechanisms in Lithium-ion batteries-A Post-Mortem study[J]. Journal of Power Sources, 2014, 262: 129-135. |
24 | 张剑波, 苏来锁, 李新宇, 等. 基于锂离子电池老化行为的析锂检测[J]. 电化学, 2016, 22(6): 607-616. |
ZHANG J B, SU L S, LI X Y, et al. Lithium plating identification from degradation behaviors of lithium-ion cells[J]. Journal of Electrochemistry, 2016, 22(6): 607-616. | |
25 | KOSEOGLOU M, TSIOUMAS E, FERENTINOU D, et al. Lithium plating detection using dynamic electrochemical impedance spectroscopy in lithium-ion batteries[J]. Journal of Power Sources, 2021, 512: doi: 10.1016/j.jpowsour.2021.230508. |
26 | XU L, YANG Y, XIAO Y, et al. In-situ determination of onset lithium plating for safe Li-ion batteries[J]. Journal of Energy Chemistry, 2022, 67: 255-262. |
27 | SMART M C, RATNAKUMAR B V. Effects of electrolyte composition on lithium plating in lithium-ion cells[J]. Journal of the Electrochemical Society, 2011, 158(4): doi: 10.1149/1.3544439. |
28 | SIEG J, BANDLOW J, MITSCH T, et al. Fast charging of an electric vehicle lithium-ion battery at the limit of the lithium deposition process[J]. Journal of Power Sources, 2019, 427: 260-270. |
29 | PAN Y, REN D S, KUANG K, et al. Novel non-destructive detection methods of lithium plating in commercial lithium-ion batteries under dynamic discharging conditions[J]. Journal of Power Sources, 2022, 524: doi: 10.1016/j.jpowsour.2022.231075. |
30 | ILLIG J, SCHMIDT J P, WEISS M, et al. Understanding the impedance spectrum of 18650 LiFePO4-cells[J]. Journal of Power Sources, 2013, 239: 670-679. |
31 | CHEN X, LI L Y, LIU M M, et al. Detection of lithium plating in lithium-ion batteries by distribution of relaxation times[J]. Journal of Power Sources, 2021, 496: doi: 10.1016/j.jpowsour.2021.229867. |
32 | HANCOCK K, BECHERER J, HAGEN M, et al. Electrolyte decomposition and electrode thickness changes in Li-S cells with lithium metal anodes, prelithiated silicon anodes and hard carbon anodes[J]. Journal of the Electrochemical Society, 2017, 165(1): doi: 10.1149/2.0161801jes. |
33 | YIN S C, RHO Y H, SWAINSON I, et al. X-ray/neutron diffraction and electrochemical studies of lithium de/re-intercalation in Li1- xCo1/3Ni1/3Mn1/3O2 (x=0→1)[J]. Chemistry of Materials, 2006, 18(7): 1901-1910. |
34 | QI Y, HARRIS S J. In situ observation of strains during lithiation of a graphite electrode[J]. Journal of the Electrochemical Society, 2010, 157(6): doi: 10.1149/1.3377130. |
35 | SOMMER L W, KIESEL P, GANGULI A, et al. Fast and slow ion diffusion processes in lithium ion pouch cells during cycling observed with fiber optic strain sensors[J]. Journal of Power Sources, 2015, 296: 46-52. |
36 | BITZER B, GRUHLE A. A new method for detecting lithium plating by measuring the cell thickness[J]. Journal of Power Sources, 2014, 262: 297-302. |
37 | GRIMSMANN F, GERBERT T, BRAUCHLE F, et al. Determining the maximum charging currents of lithium-ion cells for small charge quantities[J]. Journal of Power Sources, 2017, 365: 12-16. |
38 | BAUER M, RIEGER B, SCHINDLER S, et al. Multi-phase formation induced by kinetic limitations in graphite-based lithium-ion cells: Analyzing the effects on dilation and voltage response[J]. Journal of Energy Storage, 2017, 10: 1-10. |
39 | BIRKENMAIER C, BITZER B, HARZHEIM M, et al. Lithium plating on graphite negative electrodes: Innovative qualitative and quantitative investigation methods[J]. Journal of the Electrochemical Society, 2015, 162(14): doi: 10.1149/2.0451514jes. |
40 | RIEGER B, SCHUSTER S F, ERHARD S V, et al. Multi-directional laser scanning as innovative method to detect local cell damage during fast charging of lithium-ion cells[J]. Journal of Energy Storage, 2016, 8: 1-5. |
41 | ROBINSON J B, OWEN R E, KOK M D R, et al. Identifying defects in Li-ion cells using ultrasound acoustic measurements[J]. Journal of the Electrochemical Society, 2020, 167(12): doi: 10.1149/1945-7111/abb174. |
42 | BOMMIER C, CHANG W, LU Y F, et al. In operando acoustic detection of lithium metal plating in commercial LiCoO2/graphite pouch cells[J]. Cell Reports Physical Science, 2020, 1(4): doi: 10.1016/j.xcrp.2020.100035. |
43 | JIN Y, ZHENG Z K, WEI D H, et al. Detection of micro-scale Li dendrite via H2 gas capture for early safety warning[J]. Joule, 2020, 4(8): 1714-1729. |
[1] | 韩江浩, 王晓丹, 李奇松, 李慧芳, 王睿, 许刚. 锂离子电池加速循环测试研究[J]. 储能科学与技术, 2023, 12(1): 255-262. |
[2] | 潘岳, 韩雪冰, 欧阳明高, 任华华, 刘巍, 闫月君. 锂离子电池内短路检测算法及其在实际数据中的应用[J]. 储能科学与技术, 2023, 12(1): 198-208. |
[3] | 郑瀚, 来沛霈, 田晓华, 孙卓, 张哲娟. 多级碳复合的大尺寸硅颗粒在锂离子电池负极中的性能[J]. 储能科学与技术, 2023, 12(1): 23-34. |
[4] | 何骁龙, 石晓龙, 王子阳, 韩路豪, 姚斌. 过充、过热及其共同作用下车用三元锂离子电池热失控特性[J]. 储能科学与技术, 2023, 12(1): 218-226. |
[5] | 陈晓宇, 耿萌萌, 王乾坤, 沈佳妮, 贺益君, 马紫峰. 基于电化学阻抗特征选择和高斯过程回归的锂离子电池健康状态估计方法[J]. 储能科学与技术, 2022, 11(9): 2995-3002. |
[6] | 贡淑雅, 王跃, 李萌, 邱景义, 王洪, 文越华, 徐斌. 锂离子电池负极材料TiNb2O7 的研究进展[J]. 储能科学与技术, 2022, 11(9): 2921-2932. |
[7] | 张群斌, 董陶, 李晶晶, 刘艳侠, 张海涛. 废旧电池电解液回收及高值化利用研发进展[J]. 储能科学与技术, 2022, 11(9): 2798-2810. |
[8] | 牛少军, 吴凯, 朱国斌, 王艳, 曲群婷, 郑洪河. 锂离子电池硅基负极循环过程中的膨胀应力[J]. 储能科学与技术, 2022, 11(9): 2989-2994. |
[9] | 邓林旺, 冯天宇, 舒时伟, 张子峰, 郭彬. 锂离子电池快充策略技术研究进展[J]. 储能科学与技术, 2022, 11(9): 2879-2890. |
[10] | 栗志展, 秦金磊, 梁嘉宁, 李峥嵘, 王瑞, 王得丽. 高镍三元层状锂离子电池正极材料:研究进展、挑战及改善策略[J]. 储能科学与技术, 2022, 11(9): 2900-2920. |
[11] | 王洋, 卢旭, 张宇新, 刘龙. 动力电池热失控排气策略[J]. 储能科学与技术, 2022, 11(8): 2480-2487. |
[12] | 张青松, 赵洋, 刘添添. 荷电状态和电池排列对锂离子电池热失控传播的影响[J]. 储能科学与技术, 2022, 11(8): 2519-2525. |
[13] | 孙涛, 沈腾腾, 刘昕, 任东生, 刘金海, 郑岳久, 王鲁彦, 卢兰光, 欧阳明高. 滴定-气相色谱技术在锂离子电池析锂定量检测中的应用[J]. 储能科学与技术, 2022, 11(8): 2564-2573. |
[14] | 肖勇, 徐俊. 基于组合赋权与TOPSIS的储能电站电池安全运行风险评价[J]. 储能科学与技术, 2022, 11(8): 2574-2584. |
[15] | 喻航, 张英, 徐超航, 余思瀚. 锂电储能系统热失控防控技术研究进展[J]. 储能科学与技术, 2022, 11(8): 2653-2663. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||