1 |
AFTAB W, HUANG X Y, WU W H, et al. Nanoconfined phase change materials for thermal energy applications[J]. Energy & Environmental Science, 2018, 11(6): 1392-1424.
|
2 |
次恩达, 王会, 李晓卿, 等. 六水硝酸镁-硝酸锂共晶盐/膨胀石墨复合相变材料的制备及性能强化[J]. 储能科学与技术, 2022, 11(1): 30-37.
|
|
CI E D, WANG H, LI X Q, et al. Preparation and property enhancement of magnesium nitrate hexahydrate-lithium nitrate eutectic/expanded graphite composite phase change materials[J]. Energy Storage Science and Technology, 2022, 11(1): 30-37.
|
3 |
孔德玉, 潘罗晟, 詹树林, 等. 无机水合盐相变陶粒的制备与性能[J]. 硅酸盐学报, 2016, 44(7): 1051-1058.
|
|
KONG D Y, PAN L S, ZHAN S L, et al. Preparation and properties of phase change ceramisite loaded with inorganic salt hydrate[J]. Journal of the Chinese Ceramic Society, 2016, 44(7): 1051-1058.
|
4 |
杜昭, 阳康, 舒高, 等. 金属泡沫内石蜡固液相变蓄热/放热实验[J]. 储能科学与技术, 2022, 11(2): 531-537.
|
|
DU Z, YANG K, SHU G, et al. Experimental study on the heat storage and release of the solid-liquid phase change in metal-foam-filled tube[J]. Energy Storage Science and Technology, 2022, 11(2): 531-537.
|
5 |
魏宁, 铁生年. 功能化碳纳米纤维增强芒硝基相变储能材料的热性能[J]. 材料导报, 2022, 36(6): 20-26.
|
|
WEI N, TIE S N. Functionalized carbon nanofibers enhance the thermal properties of Glauber's salt-based phase change energy storage materials[J]. Materials Reports, 2022, 36(6): 20-26.
|
6 |
王亮, 汪长安, 柳馨, 等. 多孔碳海绵封装Na2SO4 ·10H2O/Na2HPO4 ·12H2O复合相变材料及其热性能[J]. 硅酸盐学报, 2022, 50(6): 1634-1641.
|
|
WANG L, WANG C G, LIU X, et al. Preparation and thermal properties of Na2SO4 ·10H2O/Na2HPO4 ·12H2O composite phase transition materials supported by porous carbon sponge[J]. Journal of the Chinese Ceramic Society, 2022, 50(6): 1634-1641.
|
7 |
JIANG Y Q, CHOWDHURY S, BALASUBRAMANIAN R. Nitrogen and sulfur codoped graphene aerogels as absorbents and visible light-active photocatalysts for environmental remediation applications[J]. Environmental Pollution, 2019, 251: 344-353.
|
8 |
HUANG X, ALVA G, LIU L K, et al. Preparation, characterization and thermal properties of fatty acid eutectics/bentonite/expanded graphite composites as novel form-stable thermal energy storage materials[J]. Solar Energy Materials and Solar Cells, 2017, 166: 157-166.
|
9 |
姬忠军, 李生娟, 马占宇, 等. 负载NiCo金属粒子的N掺杂多孔碳结构作为Zn空气电池优异的双功能电催化剂[J]. 功能材料, 2020, 51(6): 6012-6021.
|
|
JI Z J, LI S J, MA Z Y, et al. N-doped porous carbon structure with NiCo metal particles as excellent dual-functional electrocatalyst for Zn air battery[J]. Journal of Functional Materials, 2020, 51(6): 6012-6021.
|
10 |
ZHENG F H, ZHONG W T, DENG Q, et al. Three-dimensional (3D) flower-like MoSe2/N-doped carbon composite as a long-life and high-rate anode material for sodium-ion batteries[J]. Chemical Engineering Journal, 2019, 357: 226-236.
|
11 |
张诗诗, 秦棪阳, 苏亚琼. 析氢反应中氮掺杂石墨烯负载金属单/双原子催化活性起源[J]. 储能科学与技术, 2021, 10(6): 2008-2012.
|
|
ZHANG S S, QIN Y Y, SU Y Q. Activity origin of single/double-atom catalyst for hydrogen evolution reaction[J]. Energy Storage Science and Technology, 2021, 10(6): 2008-2012.
|
12 |
沈进冉, 郭翠静, 陈赫, 等. 高性能氮掺杂石墨烯的制备及其储锂性能[J]. 储能科学与技术, 2019, 8(6): 1137-1144.
|
|
SHEN J R, GUO C J, CHEN H, et al. Synthesis and lithium storage property of high-performance N-doped reduced graphene oxide[J]. Energy Storage Science and Technology, 2019, 8(6): 1137-1144.
|
13 |
SEVILLA M, YU L H, ZHAO L, et al. Surface modification of CNTs with N-doped carbon: An effective way of enhancing their performance in supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(4): 1049-1055.
|
14 |
PAN Y, SUN K A, LIU S J, et al. Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting[J]. Journal of the American Chemical Society, 2018, 140(7): 2610-2618.
|
15 |
LI Zesheng, LIN Jiaping, LI Bolin, et al. Construction of heteroatom-doped and three-dimensional graphene materials for the applications in supercapacitors: A review[J]. Journal of Energy Storage, 2021(44):1-33.
|
16 |
YAN C N, MENG N, LYU W, et al. Hierarchical porous hollow carbon spheres derived from spirofluorene- and aniline-linked conjugated microporous polymer for phase change energy storage[J]. Carbon, 2021, 176: 178-187.
|
17 |
李云, 杨旺, 李永峰. 石油沥青基MoS2/多孔碳复合材料的制备及其锂存储性能[J]. 储能科学与技术, 2022, 11(3): 1026-1034.
|
|
LI Y, YANG W, LI Y F. Synthesis of petroleum asphalt-based MoS2/porous carbon material and its Li-storage performance[J]. Energy Storage Science and Technology, 2022, 11(3): 1026-1034.
|
18 |
孙春水, 郭德才, 陈剑. 碳化木耳多孔碳的制备及在硫正极中的应用[J]. 储能科学与技术, 2021, 10(6): 2060-2068.
|
|
SUN C S, GUO D C, CHEN J. Preparation and research of carbonized agaric material for sulfur cathodes[J]. Energy Storage Science and Technology, 2021, 10(6): 2060-2068.
|
19 |
喻彩梅, 章学来, 华维三. 十水硫酸钠相变储能材料研究进展[J]. 储能科学与技术, 2021.10(3):1016–1024.
|
|
YU C M, ZHANG X L, HUA W S. Research progress of sodium sulfate decahydrate phase change energy storage materials[J]. Energy Storage Science and Technology, 2021. 10(3):1016-1024.
|
20 |
陈凤兰, 柳馨, 铁生年, 等. 纳米氧化石墨烯/芒硝基复合相变材料的制备及其热性能[J]. 硅酸盐学报, 2022, 50(6): 1642-1651.
|
|
CHEN F L, LIU X, TIE S N, et al. Preparation and thermal performance of nano-graphene oxide/mirabilite composite phase change materials[J]. Journal of the Chinese Ceramic Society,
|