储能科学与技术 ›› 2023, Vol. 12 ›› Issue (11): 3340-3351.doi: 10.19799/j.cnki.2095-4239.2023.0467
收稿日期:
2023-07-06
修回日期:
2023-07-29
出版日期:
2023-11-05
发布日期:
2023-11-16
通讯作者:
秦学
E-mail:chenna_1@tju.edu.cn;qinxue@tju.cn
作者简介:
陈娜(2000—),女,硕士研究生,研究方向为钠离子电池,E-mail:chenna_1@tju.edu.cn;
Na CHEN(), Anqi LI, Zixiang GUO, Yuzhe ZHANG, Xue QIN()
Received:
2023-07-06
Revised:
2023-07-29
Online:
2023-11-05
Published:
2023-11-16
Contact:
Xue QIN
E-mail:chenna_1@tju.edu.cn;qinxue@tju.cn
摘要:
由于钠资源丰富、成本低廉和分布广泛等优点,在锂离子电池的众多备选电池当中,钠离子电池重新成为研究热点。在现今主流的钠离子电池正极材料当中,相较于放电比容量不高的聚阴离子材料、充放电过程中频繁相变的层状氧化物材料以及易溶于电解液且自身导电性较差的有机正极材料来讲,普鲁士蓝及其类似物(PB和PBAs)因具有三维刚性开放骨架、理论比容量高、结构可调以及易于普及的合成方法等展现出非凡的潜力。然而在合成过程中不可避免地会在晶体中产生Fe(CN)6空位和配位水,限制了其在储能领域的进一步应用。针对上述问题,现今采用的主要手段为对体相进行优化提高晶体的质量,或者侧重于对晶体结构表面进行修饰增强界面稳定性等。本文从结构与性能的关系出发,首先讨论了PB及PBAs的基础结构及其构建方法。在此基础上,重点从调节制备方法、离子掺杂和特殊结构设计等三方面分析了PB及PBAs结构优化的策略,综述了PB和PBAs材料的最新改性研究进展。最后对其未来的发展前景进行了展望,以期为开发更高性能的PB及PBAs材料提供理论借鉴。
中图分类号:
陈娜, 李安琪, 郭子祥, 张钰哲, 秦学. 钠离子电池普鲁士蓝材料结构构建及优化的研究进展[J]. 储能科学与技术, 2023, 12(11): 3340-3351.
Na CHEN, Anqi LI, Zixiang GUO, Yuzhe ZHANG, Xue QIN. Research progress on the construction and optimization of Prussian blue material structure for sodium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(11): 3340-3351.
表1
钠离子电池普鲁士蓝正极材料的电化学性能"
Samples | Capacity /(mAh/g@mA/g) | Cyclability /(cycles, retention%@mA/g) | Rate capacity /(mAh/g@mA/g) | Refs. |
---|---|---|---|---|
Na1.41Mn0.32Fe0.11Co0.28Ni0.32Cu0.32[Fe(CN)6]·2.89H2O | 105@15 | 50000,79@1500 | 36@7500 | [ |
K2Mn[Fe(CN)6] | 120@25 | 2000,75@100 | 56@2000 | [ |
Na2Mn0.6Fe0.2Ni0.2(CN)6 | 115@15 | 2000,66@750 | 84@15000 | [ |
Na1.6Mn0.75(□Mn)0.25[Fe(CN)6]·1.57H2O | 137@25 | 2700,72@500 | 100@500 | [ |
Na1.76FeFe(CN)6·2.6H2O | 115@20 | 1000,76@200 | 75@4000 | [ |
Na2-xMnFe(CN)6 | 164@10 | 500,57@100 | 110@500 | [ |
C‐FeHCF | 123@17 | 1000,87@1700 | 77.8@8500 | [ |
Na1.37Fe[Fe(CN)6]0.91⋅1.65 H2O | 130@50 | 3000,97@10000 | 101@10000 | [ |
MnNiPB | 93@100 | 500,96@100 | 70@4000 | [ |
1 | ZHAO Y, DING Y, LI Y T, et al. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage[J]. Chemical Society Reviews, 2015, 44(22): 7968-7996. |
2 | GUNEY M S, TEPE Y. Classification and assessment of energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2017, 75: 1187-1197. |
3 | JI X L. A paradigm of storage batteries[J]. Energy & Environmental Science, 2019, 12(11): 3203-3224. |
4 | CHU S, CUI Y, LIU N. The path towards sustainable energy[J]. Nature Materials, 2017, 16(1): 16-22. |
5 | YANG C, XIN S, MAI L Q, et al. Materials design for high-safety sodium-ion battery[J]. Advanced Energy Materials, 2021, 11(2): 2000974. |
6 | ZHU X H, MENG F Q, ZHANG Q H, et al. LiMnO2 cathode stabilized by interfacial orbital ordering for sustainable lithium-ion batteries[J]. Nature Sustainability, 2021, 4(5): 392-401. |
7 | BOSTRÖM H L B, COLLINGS I E, DAISENBERGER D, et al. Probing the influence of defects, hydration, and composition on Prussian blue analogues with pressure[J]. Journal of the American Chemical Society, 2021, 143(9): 3544-3554. |
8 | TARASCON J M. Na-ion versus Li-ion batteries: Complementarity rather than competitiveness[J]. Joule, 2020, 4(8): 1616-1620. |
9 | HU Y S, LI Y Q. Unlocking sustainable Na-ion batteries into industry[J]. ACS Energy Letters, 2021, 6(11): 4115-4117. |
10 | LIU Y C, SHEN Q Y, ZHAO X D, et al. Hierarchical engineering of porous P2-Na2/3Ni1/3Mn2/3O2 nanofibers assembled by nanoparticles enables superior sodium-ion storage cathodes[J]. Advanced Functional Materials, 2020, 30(6): 1907837. |
11 | SHEN Q Y, LIU Y, C ZHAO X D, et al. Transition-metal vacancy manufacturing and sodium-site doping enable a high-performance layered oxide cathode through cationic and anionic redox chemistry[J]. Advanced Functional Materials, 2021, 31(51): 2106923. |
12 | JIN T, LI H X, ZHU K J, et al. Polyanion-type cathode materials for sodium-ion batteries[J]. Chemical Society Reviews, 2020, 49(8): 2342-2377. |
13 | LIU X Y, CAO Y, SUN J. Defect engineering in Prussian blue analogs for high-performance sodium-ion batteries[J]. Advanced Energy Materials, 2022, 12(46): 2202532. |
14 | XIE B X, SUN B Y, GAO T Y, et al. Recent progress of Prussian blue analogues as cathode materials for nonaqueous sodium-ion batteries[J]. Coordination Chemistry Reviews, 2022, 460: 214478. |
15 | RAJAGOPALAN R, TANG Y G, JIA C K, et al. Understanding the sodium storage mechanisms of organic electrodes in sodium ion batteries: Issues and solutions[J]. Energy & Environmental Science, 2020, 13(6): 1568-1592. |
16 | CHEN X, FENG X, REN B, et al. High rate and long lifespan sodium-organic batteries using pseudocapacitive porphyrin complexes-based cathode[J]. Nano-Micro Letters, 2021, 13(1): 1-16. |
17 | CHAYAMBUKA K, MULDER G, DANILOV D L, et al. From Li-ion batteries toward Na-ion chemistries: Challenges and opportunities[J]. Advanced Energy Materials, 2020, 10(38): 2001310. |
18 | CHAYAMBUKA K, MULDER G, DANILOV D, et al. Sodium-ion battery materials and electrochemical properties reviewed[J]. Advanced Energy Materials, 2018, 8(16): 1800079. |
19 | DENG J Q, LUO W B, CHOU S L, et al. Sodium-ion batteries: From academic research to practical commercialization[J]. Advanced Energy Materials, 2018, 8(4): 1701428. |
20 | WU X Y, WU C H, WEI C X, et al. Highly crystallized Na2CoFe(CN)6 with suppressed lattice defects as superior cathode material for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(8): 5393-5399. |
21 | LIU Y, QIAO Y, ZHANG W X, et al. Sodium storage in Na-rich NaxFeFe(CN)6 nanocubes[J]. Nano Energy, 2015, 12: 386-393. |
22 | PENG J, ZHANG B, HUA W B, et al. A disordered Rubik's cube-inspired framework for sodium-ion batteries with ultralong cycle lifespan[J]. Angewandte Chemie International Edition, 2023, 62(6): e202215865. |
23 | CAMACHO P S, WERNERT R, DUTTINE M, et al. Impact of synthesis conditions in Na-rich Prussian blue analogues[J]. ACS Applied Materials & Interfaces, 2021, 13(36): 42682-42692. |
24 | LI X X, SHANG Y, YAN D, et al. Topotactic epitaxy self-assembly of potassium manganese hexacyanoferrate superstructures for highly reversible sodium-ion batteries[J]. ACS Nano, 2022, 16(1): 453-461. |
25 | XU Z, SUN Y, XIE J, et al. High-performance Ni/Fe-codoped manganese hexacyanoferrate by scale-up synthesis for practical Na-ion batteries[J]. Materials Today Sustainability, 2022, 18: 100113. |
26 | SUN J G, YE H L, OH J A S, et al. Alleviating mechanical degradation of hexacyanoferrate via strain locking during Na+ insertion/extraction for full sodium ion battery[J]. Nano Research, 2022, 15(3): 2123-2129. |
27 | XI Y M, LU Y C. Electrochemically active Mn-doped iron hexacyanoferrate as the cathode material in sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(34): 39022-39030. |
28 | HUANG Y X, XIE M, ZHANG J T, et al. A novel border-rich Prussian blue synthetized by inhibitor control as cathode for sodium ion batteries[J]. Nano Energy, 2017, 39: 273-283. |
29 | PENG J A, WANG J S, YI H C, et al. Sodium ion batteries: A dual-insertion type sodium-ion full cell based on high-quality ternary-metal Prussian blue analogs[J]. Advanced Energy Materials, 2018, 8(11): 1702856. |
30 | SHANG Y, LI X X, SONG J J, et al. Unconventional Mn vacancies in Mn-Fe Prussian blue analogs: Suppressing jahn-teller distortion for ultrastable sodium storage[J]. Chem, 2020, 6(7): 1804-1818. |
31 | JIANG Y, SHEN L X, MA H T, et al. A low-strain metal organic framework for ultra-stable and long-life sodium-ion batteries[J]. Journal of Power Sources, 2022, 541: 231701. |
32 | REN W H, ZHU Z X, QIN M S, et al. Prussian white hierarchical nanotubes with surface-controlled charge storage for sodium-ion batteries[J]. Advanced Functional Materials, 2019, 29(15): 1806405. |
33 | WANG W L, HU Z, YAN Z C, et al. Understanding rhombohedral iron hexacyanoferrate with three different sodium positions for high power and long stability sodium-ion battery[J]. Energy Storage Materials, 2020, 30: 42-51. |
34 | TANG W, XIE Y Y, PENG F W, et al. Electrochemical performance of NaFeFe(CN)6 prepared by solid reaction for sodium ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(16): A3910-A3917. |
35 | PENG J A, GAO Y, ZHANG H, et al. Ball milling solid-state synthesis of highly crystalline Prussian blue analogue Na2- xMnFe(CN)6 cathodes for all-climate sodium-ion batteries[J]. Angewandte Chemie International Edition, 2022, 61(32): e202205867. |
36 | HE S L, ZHAO J M, RONG X H, et al. Solvent-free mechanochemical synthesis of Na-rich Prussian white cathodes for high-performance Na-ion batteries[J]. Chemical Engineering Journal, 2022, 428: 131083. |
37 | GENG W G, ZHANG Z H, YANG Z L, et al. Non-aqueous synthesis of high-quality Prussian blue analogues for Na-ion batteries[J]. Chemical Communications, 2022, 58(28): 4472-4475. |
38 | GUO J H, FENG F, ZHAO S Q, et al. High FeLS(C) electrochemical activity of aniron hexacyanoferrate cathode boosts superior sodium ion storage[J]. Carbon Energy, 2023, 5(5): e314. |
39 | JIANG M W, HOU Z D, WANG J J, et al. Balanced coordination enables low-defect Prussian blue for superfast and ultrastable sodium energy storage[J]. Nano Energy, 2022, 102: 107708. |
40 | 钱江锋, 周敏, 曹余良, 等. NaxMyFe(CN)6(M=Fe, Co, Ni): 一类新颖的钠离子电池正极材料[J]. 电化学, 2012, 18(2): 108-112. |
QIAN J F, ZHOU M, CAO Y L, et al. NaxMyFe(CN)6 (M=Fe, Co, Ni): A new class of cathode materials for sodium ion batteries[J]. Journal of Electrochemistry, 2012, 18(2): 108-112. | |
41 | WANG W L, GANG Y, PENG J, et al. Effect of eliminating water in Prussian blue cathode for sodium-ion batteries[J]. Advanced Functional Materials, 2022, 32(25): 2111727. |
42 | LI Y J, WANG X F, GAO Y R, et al. Native vacancy enhanced oxygen redox reversibility and structural robustness[J]. Advanced Energy Materials, 2019, 9(4): 1803087. |
43 | MORTEMARD DE BOISSE B, NISHIMURA S, WATANABE E, et al. Highly reversible oxygen-redox chemistry at 4.1 V in Na4/7- x[ϒ1/7Mn6/7]O2 (ϒ: Mn vacancy)[J]. Advanced Energy Materials, 2018, 8(20): 1800409. |
44 | WAN M, ZENG R, MENG J T, et al. Post-synthetic and in situ vacancy repairing of iron hexacyanoferrate toward highly stable cathodes for sodium-ion batteries[J]. Nano-Micro Letters, 2022, 14(1): 9. |
45 | YUE Y F, BINDER A J, GUO B K, et al. Mesoporous Prussian blue analogues: Template-free synthesis and sodium-ion battery applications[J]. Angewandte Chemie International Edition, 2014, 53(12): 3134-3137. |
46 | 沈志龙. 锰基普鲁士蓝类钠离子电池正极材料的共沉淀法制备及电化学性能研究[D]. 杭州: 浙江大学, 2019. |
SHEN Z L. Precipitation preparation and electrochemical performance of manganese-based Prussian blue cathode for sodium ion batteries[D]. Hangzhou: Zhejiang University, 2019. | |
47 | XIE B X, WANG L G, SHU J E, et al. Understanding the structural evolution and lattice water movement for rhombohedral nickel hexacyanoferrate upon sodium migration[J]. ACS Applied Materials & Interfaces, 2019, 11(50): 46705-46713. |
48 | PENG J, ZHANG W, HU Z, et al. Ice-assisted synthesis of highly crystallized Prussian blue analogues for all-climate and long-calendar-life sodium ion batteries[J]. Nano Letters, 2022, 22(3): 1302-1310. |
49 | SHEN L X, JIANG Y, JIANG Y, et al. Monoclinic bimetallic Prussian blue analog cathode with high capacity and long life for advanced sodium storage[J]. ACS Applied Materials & Interfaces, 2022, 14(21): 24332-24340. |
50 | ZHANG L L, CHEN Z Y, FU X Y, et al. Effect of Zn-substitution induced structural regulation on sodium storage performance of Fe-based Prussian blue[J]. Chemical Engineering Journal, 2022, 433: 133739. |
51 | WEI C, FU X Y, ZHANG L L, et al. Structural regulated nickel hexacyanoferrate with superior sodium storage performance by K-doping[J]. Chemical Engineering Journal, 2021, 421: 127760. |
52 | CHEN Z S, ZHANG L L, FU X Y, et al. Synergistic modification of Fe-based Prussian blue cathode material based on structural regulation and surface engineering[J]. ACS Applied Materials & Interfaces, 2022, 14(38): 43308-43318. |
53 | LIU X Y, GONG H C, HAN C Y, et al. Barium ions act as defenders to prevent water from entering Prussian blue lattice for sodium-ion battery[J]. Energy Storage Materials, 2023, 57: 118-124. |
54 | WANG Z H, HUANG Y X, CHU D T, et al. Continuous conductive networks built by Prussian blue cubes and mesoporous carbon lead to enhanced sodium-ion storage performances[J]. ACS Applied Materials & Interfaces, 2021, 13(32): 38202-38212. |
55 | HUANG T B, NIU Y B, YANG Q J, et al. Self-template synthesis of Prussian blue analogue hollow polyhedrons as superior sodium storage cathodes[J]. ACS Applied Materials & Interfaces, 2021, 13(31): 37187-37193. |
56 | LEE S Y, PARK J Y, KIM H J, et al. Prussian blue-graphene oxide composite cathode for a sodium-ion capacitor with improved cyclic stability and energy density[J]. Journal of Alloys and Compounds, 2022, 898: 162952. |
57 | WANG X, WANG B Q, TANG Y X, et al. Manganese hexacyanoferrate reinforced by PEDOT coating towards high-rate and long-life sodium-ion battery cathode[J]. Journal of Materials Chemistry A, 2020, 8(6): 3222-3227. |
58 | GEBERT F, CORTIE D L, BOUWER J C, et al. Epitaxial nickel ferrocyanide stabilizes Jahn-Teller distortions of manganese ferrocyanide for sodium-ion batteries[J]. Angewandte Chemie (International Ed in English), 2021, 60(34): 18519-18526. |
59 | HU P, PENG W B, WANG B, et al. Concentration-gradient Prussian blue cathodes for Na-ion batteries[J]. ACS Energy Letters, 2020, 5(1): 100-108. |
60 | XIE B X, WANG L G, LI H F, et al. An interface-reinforced rhombohedral Prussian blue analogue in semi-solid state electrolyte for sodium-ion battery[J]. Energy Storage Materials, 2021, 36: 99-107. |
61 | XIE B X, DU Y, MA Y L, et al. Interface reinforcement of a Prussian blue cathode using a non-flammable co-solvent cresyl diphenyl phosphate for a high-safety Na-ion battery[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(17): 5809-5817. |
62 | DU G Y, TAO M L, LI J E, et al. Low-operating temperature, high-rate and durable solid-state sodium-ion battery based on polymer electrolyte and Prussian blue cathode[J]. Advanced Energy Materials, 2020, 10(5): 1903351. |
63 | AO H S, CHEN C Y, HOU Z G, et al. Electrolyte solvation structure manipulation enables safe and stable aqueous sodium ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(28): 14190-14197. |
[1] | 蔡浩然, 闫利珏, 杨旭, 潘慧霖. O3/P2-Na x Ni1/3Co1/3Mn1/3O2 复合相正极材料的结构演变与储钠性能[J]. 储能科学与技术, 2023, 12(9): 2707-2714. |
[2] | 张梓楠, 陈剑. Nb掺杂Na3V2O2 (PO4 ) 2F空心微球钠离子电池正极材料的制备与性能[J]. 储能科学与技术, 2023, 12(8): 2370-2381. |
[3] | 张鼎, 叶子贤, 刘镇铭, 易群, 史利娟, 郭慧娟, 黄毅, 王莉, 何向明. 钠离子电池黑磷基负极材料研究进展[J]. 储能科学与技术, 2023, 12(8): 2482-2490. |
[4] | 郭俊朋, 孙琦, 陈月芳, 赵玉文, 杨欢, 张志佳. 简便制备三维多级Fe3O4/碳纳米纤维一体化电极及其储钠性能研究[J]. 储能科学与技术, 2023, 12(5): 1469-1479. |
[5] | 边煜华, 刘朝孟, 高宣雯, 李健国, 王达, 李尚倬, 骆文彬. 醚基电解液中CoS2/NC作为钠离子电池高性能阳极的原因分析[J]. 储能科学与技术, 2023, 12(5): 1500-1509. |
[6] | 赵玉文, 杨欢, 郭俊朋, 张毅, 孙琦, 张志佳. 磁性金属元素在钠离子电池中的应用[J]. 储能科学与技术, 2023, 12(5): 1332-1347. |
[7] | 周亚男, 滑纬博, 周德重. O3-NaNi0.4Fe0.2Mn0.4O2 正极Na+ 传输动力学及相变机制[J]. 储能科学与技术, 2023, 12(4): 1011-1017. |
[8] | 苑雪, 李洪基, 白文慧, 李正曦, 杨立滨, 王恺, 陈哲. 生物质衍生碳基材料在钠离子电池负极中的应用[J]. 储能科学与技术, 2023, 12(3): 721-742. |
[9] | 戴宇成, 王增鹏, 刘凯豹, 赵佳腾, 刘昌会. 基于相变材料的储热器及其传热强化研究进展[J]. 储能科学与技术, 2023, 12(2): 431-458. |
[10] | 陈珂君, 范利君. 钴掺杂FeS2 的可控制备及储钠特性研究[J]. 储能科学与技术, 2023, 12(10): 3056-3063. |
[11] | 王绍聪, 李伟, 黄瑞琴, 郭艺飞, 刘峥. 锰基钠离子电池正极材料Jahn-Teller效应抑制方法进展[J]. 储能科学与技术, 2023, 12(1): 139-149. |
[12] | 张凯, 徐友龙. 钠离子电池锰酸钠正极材料研究进展与发展趋势[J]. 储能科学与技术, 2023, 12(1): 86-110. |
[13] | 张俊, 李琦, 陶莹, 杨全红. 钠离子电池筛分型碳:缘起与进展[J]. 储能科学与技术, 2022, 11(9): 2825-2833. |
[14] | 郭凯强, 车海英, 张浩然, 廖建平, 周煌, 张云龙, 陈航达, 申展, 刘海梅, 马紫峰. B2O3 包覆NaNi1/3Fe1/3Mn1/3O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(9): 2980-2988. |
[15] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||