1 |
国务院办公厅. 新能源汽车产业发展规划(2021—2035年)[EB/OL].[2020-11-02]. https://www.gov.cn/zhengce/zhengceku/2020-11/02/content_5556716.htm.
|
|
General office of the state council of the People's Republic of China. Development plan of new energy automobile industry (2021—2035) [EB/OL].[2020-11-02].https://www.gov.cn/zhengce/zhengceku/2020-11/02/content_5556716.htm.
|
2 |
中国汽车流通协会汽车市场研究分会. 2023年6月份全国乘用车市场分析[EB/OL].[2023-7-10].http://www.cpcaauto.com/newslist.php?types=csjd&id=3167.
|
|
Passenger Union.National passenger car market analysis in June 2023[EB/OL]. http://www.cpcaauto.com/newslist.php?types=csjd&id=3167.
|
3 |
RAO Z H, WANG S F. A review of power battery thermal energy management[J]. Renewable and Sustainable Energy Reviews, 2011, 15(9): 4554-4571.
|
4 |
WANG H B, DU Z M, RUI X Y, et al. A comparative analysis on thermal runaway behavior of Li(NixCoyMnz)O2 battery with different nickel contents at cell and module level[J]. Journal of Hazardous Materials, 2020, 393: 122361.
|
5 |
WANG Q S, MAO B B, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131.
|
6 |
FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267.
|
7 |
SUN P Y, BISSCHOP R, NIU H C, et al. A review of battery fires in electric vehicles[J]. Fire Technology, 2020, 56(4): 1361-1410.
|
8 |
夏继豪. 纯电动汽车的火灾特性及热释放速率探讨[J]. 安全与环境学报, 2021, 21(3): 1028-1032.
|
|
XIA J H. Discussion on fire characteristics and heat release rate of blade electric vehicles[J]. Journal of Safety and Environment, 2021, 21(3): 1028-1032.
|
9 |
张良, 张得胜, 陈克, 等. 动力电池热失控引发电动汽车火灾的典型特征研究[J]. 中国安全生产科学技术, 2020, 16(7): 94-99.
|
|
ZHANG L, ZHANG D S, CHEN K, et al. Research on typical characteristics of electric vehicle fire caused by thermal runaway of power battery[J]. Journal of Safety Science and Technology, 2020, 16(7): 94-99.
|
10 |
JEEVARAJAN J. A darker shade of green: Hazards associated with high voltage high capacity lithium-ion batteries[J/OL]. The Journal of High Technology Law.[2023-07-01]. http://www.questia.com/read/1G1-560558032/a-darker-shade-of-green-hazards-associated-with-lithium-ion.
|
11 |
MAO B B, CHEN H D, CUI Z X, et al. Failure mechanism of the lithium ion battery during nail penetration[J]. International Journal of Heat and Mass Transfer, 2018, 122: 1103-1115.
|
12 |
BAK S M, HU E Y, ZHOU Y N, et al. Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy[J]. ACS Applied Materials & Interfaces, 2014, 6(24): 22594-22601.
|
13 |
PING P, WANG Q S, HUANG P F, et al. Thermal behaviour analysis of lithium-ion battery at elevated temperature using deconvolution method[J]. Applied Energy, 2014, 129: 261-273.
|
14 |
REN D S, LIU X, FENG X N, et al. Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components[J]. Applied Energy, 2018, 228: 633-644.
|
15 |
YAMAKI J I, SHINJO Y, DOI T, et al. The rate equation for oxygen evolution by decomposition of LixCoO2 at elevated temperatures[J]. Journal of the Electrochemical Society, 2014, 161(10): A1648-A1654.
|
16 |
FENG X N, SUN J, OUYANG M G, et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module[J]. Journal of Power Sources, 2015, 275: 261-273.
|
17 |
GAO S, FENG X N, LU L G, et al. An experimental and analytical study of thermal runaway propagation in a large format lithium ion battery module with NCM pouch-cells in parallel[J]. International Journal of Heat and Mass Transfer, 2019, 135: 93-103.
|
18 |
GAO S, LU L G, OUYANG M G, et al. Experimental study on module-to-module thermal runaway-propagation in a battery pack[J]. Journal of the Electrochemical Society, 2019, 166(10): A2065-A2073.
|
19 |
LECOCQ A, BERTANA M, TRUCHOT B, et al. Comparison of the fire consequences of an electric vehicle and an internal combustion engine vehicle[C]//FIVE 2012 SP Technical Research Institute of Sweden. Boras, 2012.
|
20 |
TRUCHOT B, FOUILLEN F, COLLET S. An experimental evaluation of toxic gas emissions from vehicle fires[J]. Fire Safety Journal, 2018, 97: 111-118.
|
21 |
LI H, PENG W, YANG X L, et al. Full-scale experimental study on the combustion behavior of lithium ion battery pack used for electric vehicle[J]. Fire Technology, 2020, 56(6): 2545-2564.
|
22 |
朱难难, 王学辉, 余佳灵, 等. 全尺寸电动汽车火灾特性试验研究[J]. 消防科学与技术, 2023, 42(1): 38-41.
|
|
ZHU N N, WANG X H, YU J L, et al. Full-scale experimental study on fire characteristics and fire-fighting performance of an electric vehicle[J]. Fire Science and Technology, 2023, 42(1): 38-41.
|
23 |
陈钦佩, 王学辉, 米文忠. 电动汽车锂离子电池系统热失控气体毒害及爆炸特性研究[J]. 储能科学与技术, 2023, 12(7): 2256-2262.
|
|
CHEN Q P, WANG X H, MI W Z. Experiential study on the toxic and explosive characteristics of thermal runaway gas generated in electric-vehicle lithium-ion battery systems[J]. Energy Storage Science and Technology, 2023, 12(7): 2256-2262.
|
24 |
陈龙飞. 纵向通风与顶棚集中排烟作用下隧道火灾顶棚射流行为特性研究[D]. 合肥: 中国科学技术大学, 2016.
|
|
CHEN L F. Studies on tunnel fire ceiling jet characteristic with longitudinal ventilation and ceiling smoke extraction[D]. Hefei: University of Science and Technology of China, 2016.
|
25 |
颜少卿. 电动汽车充电桩现场安全问题的探究[J]. 低碳世界, 2021, 11(8): 243-244.
|
|
YAN S Q. On-site safety problems of electric vehicle charging piles[J]. Low Carbon World, 2021, 11(8): 243-244.
|
26 |
张然. 电动汽车充电桩安全管理研究[J]. 交通节能与环保, 2020, 16(1): 10-13.
|
|
ZHANG R. Research on safety management of electric vehicle charging pile[J]. Transport Energy Conservation & Environmental Protection, 2020, 16(1): 10-13.
|