1 |
RYU J, HONG D, LEE H W, et al. Practical considerations of Si-based anodes for lithium-ion battery applications[J]. Nano Research, 2017, 10(12): 3970-4002.
|
2 |
LIU X H, HUANG J Y. In situ TEM electrochemistry of anode materials in lithium ion batteries[J]. Energy & Environmental Science, 2011, 4(10): 3844.
|
3 |
CHAN C K, PENG H L, LIU G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology, 2008, 3(1): 31-35.
|
4 |
WANG J Y, HUANG W, KIM Y S, et al. Scalable synthesis of nanoporous silicon microparticles for highly cyclable lithium-ion batteries[J]. Nano Research, 2020, 13(6): 1558-1563.
|
5 |
WU H, CUI Y. Designing nanostructured Si anodes for high energy lithium ion batteries[J]. Nano Today, 2012, 7(5): 414-429.
|
6 |
ZHU S S, ZHOU J B, GUAN Y, et al. Hierarchical graphene-scaffolded silicon/graphite composites as high performance anodes for lithium-ion batteries[J]. Small, 2018, 14(47): 1802457.
|
7 |
WANG F, SONG C S, ZHAO B X, et al. One-pot solution synthesis of carbon-coated silicon nanoparticles as an anode material for lithium-ion batteries[J]. Chemical Communications, 2020, 56(7): 1109-1112.
|
8 |
JIANG M M, CHEN J L, ZHANG Y B, et al. Assembly: A key enabler for the construction of superior silicon-based anodes[J]. Advanced Science, 2022, 9(30): 2203162.
|
9 |
ZHANG L, WANG C R, DOU Y H, et al. A yolk-shell structured silicon anode with superior conductivity and high tap density for full lithium-ion batteries[J]. Angewandte Chemie International Edition, 2019, 58(26): 8824-8828.
|
10 |
LIU X Y, ZHANG Q L, ZHU Y S, et al. Trash to treasure: Harmful fly ash derived silicon nanoparticles for enhanced lithium-ion batteries[J]. Silicon, 2022, 14(13): 7983-7990.
|
11 |
SU X, WU Q L, LI J C, et al. Silicon-based nanomaterials for lithium-ion batteries: A review[J]. Advanced Energy Materials, 2014, 4(1): 1300882.
|
12 |
SZCZECH J R, JIN S. Nanostructured silicon for high capacity lithium battery anodes[J]. Energy Environ Sci, 2011, 4(1): 56-72.
|
13 |
JIN Y, ZHU B, LU Z D, et al. Challenges and recent progress in the development of Si anodes for lithium-ion battery[J]. Advanced Energy Materials, 2017, 7(23): 1700715.
|
14 |
WANG L B, MEI T, LIU W Q, et al. Low temperature chemical synthesis of silicon nanoparticles as anode materials for lithium-ion batteries[J]. Materials Chemistry and Physics, 2018, 220: 308-312.
|
15 |
CHEN S, ZHENG S S, SHI A D, et al. Distinctive conductivity improvement by embedding Cu nanoparticles in the carbon shell of submicron Si@C anode materials for LIBs[J]. Sustainable Energy & Fuels, 2022, 6(9): 2306-2313.
|
16 |
SALAH M, HALL C, MURPHY P, et al. Doped and reactive silicon thin film anodes for lithium ion batteries: A review[J]. Journal of Power Sources, 2021, 506: 230194.
|
17 |
SHI Q T, ZHOU J H, ULLAH S, et al. A review of recent developments in Si/C composite materials for Li-ion batteries[J]. Energy Storage Materials, 2021, 34: 735-754.
|
18 |
LI J X, LI Z B, HUANG W J, et al. A facile strategy to construct silver-modified, ZnO-incorporated and carbon-coated silicon/porous-carbon nanofibers with enhanced lithium storage[J]. Small, 2019, 15(18): 1900436.
|
19 |
LI J X, HUANG Y C, HUANG W J, et al. Simple designed micro-nano Si-graphite hybrids for lithium storage[J]. Small, 2021, 17(8): 2006373.
|
20 |
HOU Y L, YANG Y, MENG W J, et al. Core-shell structured Si@Cu nanoparticles encapsulated in carbon cages as high-performance lithium-ion battery anodes[J]. Journal of Alloys and Compounds, 2021, 874: 159988.
|
21 |
XU C J, SHEN L, ZHANG W J, et al. Efficient implementation of kilogram-scale, high-capacity and long-life Si-C/TiO2 anodes[J]. Energy Storage Materials, 2023, 56: 319-330.
|
22 |
LI X T, YANG D D, HOU X C, et al. Scalable preparation of mesoporous silicon@C/graphite hybrid as stable anodes for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2017, 728: 1-9.
|
23 |
WANG D K, ZHOU C L, CAO B, et al. One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries[J]. Energy Storage Materials, 2020, 24: 312-318.
|
24 |
KIM S Y, KIM B H, YANG K S. Preparation and electrochemical characteristics of a polyvinylpyrrolidone-stabilized Si/carbon composite nanofiber anode for a lithium ion battery[J]. Journal of Electroanalytical Chemistry, 2013, 705: 52-56.
|
25 |
JIN Y, ZHU B, LU Z D, et al. Challenges and recent progress in the development of Si anodes for lithium-ion battery[J]. Advanced Energy Materials, 2017, 7(23): 1700715-1700731.
|
26 |
WANG Q S, MENG T, LI Y H, et al. Consecutive chemical bonds reconstructing surface structure of silicon anode for high-performance lithium-ion battery[J]. Energy Storage Materials, 2021, 39: 354-364.
|
27 |
TAO J M, YAN Z R, YANG J S, et al. Boosting the cell performance of the SiOx@C anode material via rational design of a Si-valence gradient[J]. Carbon Energy, 2022, 4(2): 129-141.
|
28 |
HU Z L, ZHAO L B, JIANG T, et al. Trifluoropropylene carbonate-driven interface regulation enabling greatly enhanced lithium storage durability of silicon-based anodes[J]. Advanced Functional Materials, 2019, 29(45): doi: 10.1002/adfm.201906548.
|
29 |
LIU Q, JI Y X, YIN X M, et al. Magnesiothermic reduction improved route to high-yield synthesis of interconnected porous Si@C networks anode of lithium ions batteries[J]. Energy Storage Materials, 2022, 46: 384-393.
|
30 |
SONG Y H, ZUO L, CHEN S H, et al. Porous nano-Si/carbon derived from zeolitic imidazolate frameworks@nano-Si as anode materials for lithium-ion batteries[J]. Electrochimica Acta, 2015, 173: 588-594.
|
31 |
WU Y H, HUANG J L, HOU S C, et al. Cu3Si enhanced crystallinity and dopamine derived nitrogen doping into carbon coated micron-sized Si/Cu3Si as anode material in lithium-ion batteries[J]. Electrochimica Acta, 2021, 387: 138495.
|
32 |
YANG Y, YANG H X, WU Y Q, et al. Graphene caging core-shell Si@Cu nanoparticles anchored on graphene sheets for lithium-ion battery anode with enhanced reversible capacity and cyclic performance[J]. Electrochimica Acta, 2020, 341: 136037.
|
33 |
KUTE A D, GAIKWAD R P, WARKAD I R, et al. A review on the synthesis and applications of sustainable copper-based nanomaterials[J]. Green Chemistry, 2022, 24(9): 3502-3573.
|
34 |
GUO J F, PEI S E, HE Z S, et al. Novel porous Si-Cu3Si-Cu microsphere composites with excellent electrochemical lithium storage[J]. Electrochimica Acta, 2020, 348: 136334.
|
35 |
MU Y B, HAN M S, WU B K, et al. Nitrogen, oxygen-codoped vertical graphene arrays coated 3D flexible carbon nanofibers with high silicon content as an ultrastable anode for superior lithium storage[J]. Advanced Science, 2022, 9(6): 2104685-2104697.
|
36 |
XU T, ZHANG J, YANG C Y, et al. Facile synthesis of carbon-coated SiO/Cu composite as superior anode for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2018, 738: 323-330.
|
37 |
SUI D, XIE Y Q, ZHAO W M, et al. A high-performance ternary Si composite anode material with crystal graphite core and amorphous carbon shell[J]. Journal of Power Sources, 2018, 384: 328-333.
|
38 |
SONG H C, WANG H X, LIN Z X, et al. Highly connected silicon-copper alloy mixture nanotubes as high-rate and durable anode materials for lithium-ion batteries[J]. Advanced Functional Materials, 2016, 26(4): 524-531.
|
39 |
LIN N, ZHOU J, ZHOU J B, et al. Synchronous synthesis of a Si/Cu/C ternary nano-composite as an anode for Li ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(34): 17544-17548.
|
40 |
LI P, HWANG J Y, SUN Y K. Nano/microstructured silicon-graphite composite anode for high-energy-density Li-ion battery[J]. ACS Nano, 2019: acsnano.9b00169.
|