储能科学与技术 ›› 2024, Vol. 13 ›› Issue (1): 1-11.doi: 10.19799/j.cnki.2095-4239.2023.0664

• 高比能二次电池关键材料与先进表征专刊 •    下一篇

纳米硅的砂磨宏量制备及其碳纤维复合负极的储锂性能研究

徐铖杰1,2(), 黄玉林1(), 林中飞雨1, 林志铭1, 方辰希1, 张卫军1,2, 黄志高1,2, 李加新1,2()   

  1. 1.福建师范大学物理与能源学院
    2.福建省太阳能转换与储能工程技术研究中心,福建 福州 350117
  • 收稿日期:2023-09-26 修回日期:2023-11-03 出版日期:2024-01-05 发布日期:2024-01-22
  • 通讯作者: 李加新 E-mail:1079854250@qq.com;1527481149@qq.com;lijiaxin@fjnu.edu.cn
  • 作者简介:徐铖杰(1998—),男,硕士研究生,研究方向为锂电池硅基负极材料,E-mail:1079854250@qq.com
    黄玉林(2002—),男,本科生,研究方向为锂电池硅基负极材料,E-mail:1527481149@qq.com
  • 基金资助:
    国家自然科学基金项目(22179020)

Macroscopic fabrication of nano-silicon via sand-milling and investigation of lithium storage performance in carbon fiber composite anodes

Chengjie XU1,2(), Yulin HUANG1(), Zhongfeiyu LIN1, Zhiming LIN1, Chenxi FANG1, Weijun ZHANG1,2, Zhigao HUANG1,2, Jiaxin LI1,2()   

  1. 1.College of Physics and Energy, Fujian Normal University
    2.Fujian Provincial Solar Energy Conversion and Energy Storage Engineering Technology Research Center, Fuzhou 350117, Fujian, China
  • Received:2023-09-26 Revised:2023-11-03 Online:2024-01-05 Published:2024-01-22
  • Contact: Jiaxin LI E-mail:1079854250@qq.com;1527481149@qq.com;lijiaxin@fjnu.edu.cn

摘要:

硅碳负极材料因具有较高的储锂容量等优势在锂离子电池领域备受关注,但仍面临电导欠佳、体积膨胀及界面兼容性差等问题。本研究从太阳能电池微米硅废料的纳米化处理出发,通过优化砂磨实验参数实现宏量制备颗粒粒径约为300 nm硅纳米颗粒。进一步地,通过静电纺丝法制备铜纳米颗粒修饰的硅碳复合材料,所制硅碳复合材料中的硅与铜纳米颗粒内嵌或附着在纳米纤维上。综合研究其电化学储锂性能发现,该复合材料以碳纳米纤维作为基体,辅以铜纳米颗粒的修饰,可构建出高导电网格并进一步提升复合材料的电导能力,有效克服硅材料的剧烈体积膨胀以及导电性差的缺点,进而表现显著增强的电化学储锂综合性能。特别是,结构优化后的硅碳复合负极材料在1.0 A/g的较高电流密度下循环550次后仍可保持765.9 mAh/g的高可逆容量。因此,本研究为宏量制备硅纳米材料及其硅碳纤维复合负极提供了良好的参考。

关键词: 锂离子电池, 纳米硅宏量制备, 硅碳负极, 性能调制, 储锂性能

Abstract:

Silicon-carbon (Si-C) anode materials have garnered substantial attention in lithium (Li)‍-ion battery development because of their high Li storage capacity and various advantages. Despite these merits, practical challenges, such as poor conductivity, substantial volume expansion, and inadequate interface compatibility, persist. This study initiates from the nano treatment of micro Si waste derived from solar cells, achieving scalable production of silicon nanoparticles with particle sizes around 300 nm by optimizing the sanding experimental parameters. Moreover, copper (Cu) nanoparticle-modified Si-C nanofiber composites (Cu-Si@CNFs) were prepared using the electrowinning method, where silicon and Cu nanoparticles were either embedded or attached to the CNFs. A comprehensive investigation of the electrochemical Li storage performance revealed that the composite, with CNFs as the matrix and supplemented by Cu nanoparticle modification, can establish a highly conductive grid. Effectively enhancing the conductance ability of composite materials, this approach overcomes the challenges associated with severe volume expansion and poor conductivity of silicon materials. The resulting material demonstrates substantially improved electrochemical Li storage performance. In particular, the optimized Cu-Si@CNF anode structure maintains a high reversible capacity of 765.9 mAh/g after 550 cycles at a high current density of 1.0 A/g. Consequently, this study provides valuable insights for the scalable preparation of silicon nanomaterials and Si-C composite anodes.

Key words: lithium-ion batteries, scalable fabrication of nano-silicon, silicon-carbon anodes, performance modulation, lithium storage capabilities

中图分类号: