1 |
ALI M U, ZAFAR A, NENGROO S H, et al. Towards a smarter battery management system for electric vehicle applications: A critical review of lithium-ion battery state of charge estimation[J]. Energies, 2019, 12(3): 446.
|
2 |
ZHANG T, MA C Q, YONG C H. Development status and trends of new energy vehicles in China[C]//AIP Conference Proceedings. Arshan, Russia. Author(s), 2019: 020012.
|
3 |
杲齐新, 赵景腾, 李国兴. 锂离子电池快速充电研究进展[J]. 储能科学与技术, 2023, 12(7): 2166-2184.
|
|
GAO Q X, ZHAO J T, LI G X. Research progress on fast-charging lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(7): 2166-2184.
|
4 |
LIN C, BURGGRÄF P, LIU L, et al. "Deep-Dive analysis of the latest Lithium-Ion battery safety testing standards and regulations in Germany and China"[J]. Renewable and Sustainable Energy Reviews, 2023, 173: 113077.
|
6 |
TOMASZEWSKA A, CHU Z Y, FENG X N, et al. Lithium-ion battery fast charging: A review[J]. eTransportation, 2019, 1: 100011.
|
7 |
刘頔, 张国华, 马仕昌, 等. 纯电动汽车用锂离子电池的低温性能[J]. 电池, 2023, 53(3): 267-270.
|
|
LIU D, ZHANG G H, MA S C, et al. Low-temperature performance of Li-ion battery for pure electric vehicle[J]. Battery Bimonthly, 2023, 53(3): 267-270.
|
8 |
ZHU G L, WEN K C, LV W Q, et al. Materials insights into low-temperature performances of lithium-ion batteries[J]. Journal of Power Sources, 2015, 300: 29-40.
|
9 |
李爽, 张树国, 杜晨树. 锂离子电池正负极材料对低温充放电性能影响[J]. 电源技术, 2021, 45(8): 979-982.
|
|
LI S, ZHANG S G, DU C S. Influence of anode and cathode materials on low temperature charging and discharging performance of lithium ion batteries[J]. Chinese Journal of Power Sources, 2021, 45(8): 979-982.
|
10 |
ZHANG G S, GE S H, YANG X G, et al. Rapid restoration of electric vehicle battery performance while driving at cold temperatures[J]. Journal of Power Sources, 2017, 371: 35-40.
|
11 |
ZHANG J Y, YANG X Q, ZHANG G Q, et al. Investigation on the root cause of the decreased performances in the overcharged lithium iron phosphate battery[J]. International Journal of Energy Research, 2018, 42(7): 2448-2455.
|
12 |
王珍珍, 郭密, 唐世弟, 等. 锂离子电池超低温放电性能的影响因素[J]. 电池, 2018, 48(4): 262-266.
|
|
WANG Z Z, GUO M, TANG S D, et al. Effect factors of ultralow temperature discharge performance of Li-ion battery[J]. Battery Bimonthly, 2018, 48(4): 262-266.
|
13 |
LANGDON J, MANTHIRAM A. A perspective on single-crystal layered oxide cathodes for lithium-ion batteries[J]. Energy Storage Materials, 2021, 37: 143-160.
|
14 |
ZHANG S S, XU K, JOW T R. The low temperature performance of Li-ion batteries[J]. Journal of Power Sources, 2003, 115(1): 137-140.
|
15 |
RYU H H, PARK G T, YOON C S, et al. Microstructural degradation: Microstructural degradation of Ni-rich Li[NixCoyMn1- x- y]O2 cathodes during accelerated calendar aging[J]. Small, 2018, 14(45): 1803179.
|
16 |
KIM J M, CHUNG H T. The first cycle characteristics of Li[Ni1/3Co1/3Mn1/3]O2 charged up to 4.7 V[J]. Electrochimica Acta, 2004, 49(6): 937-944.
|
17 |
YU H J, WANG Y R, ASAKURA D, et al. Electrochemical kinetics of the 0.5Li2MnO3 ·0.5LiMn0.42Ni0.42Co0.16O2 'composite' layered cathode material for lithium-ion batteries[J]. RSC Advances, 2012, 2(23): 8797-8807.
|