储能科学与技术 ›› 2024, Vol. 13 ›› Issue (1): 345-357.doi: 10.19799/j.cnki.2095-4239.2023.0558
收稿日期:
2023-08-07
修回日期:
2023-09-18
出版日期:
2024-01-05
发布日期:
2024-01-22
通讯作者:
王昆
E-mail:duwas_2022@tju.edu.cn;kwang5@tju.edu.cn
作者简介:
杜文(1999—),男,硕士研究生,研究方向为火焰合成纳米材料,E-mail:duwas_2022@tju.edu.cn;
基金资助:
Wen DU(), Junlei WANG, Yunfei XU, Shilong LI, Kun WANG()
Received:
2023-08-07
Revised:
2023-09-18
Online:
2024-01-05
Published:
2024-01-22
Contact:
Kun WANG
E-mail:duwas_2022@tju.edu.cn;kwang5@tju.edu.cn
摘要:
正极材料约占锂离子电池制造成本的三成,是影响动力电池价格的主要因素;采用火焰喷雾热解法生产三元正极材料能耗低、设备少,可降低锂离子电池的制造成本。本文研究的主要目标是定量评估采用火焰喷雾热解法生产高镍三元正极材料的技术经济可行性。计算火焰喷雾热解法生产LiNi0.8Co0.1Mn0.1O2(NCM811)的原料、燃料、排放产物质量流量和盈亏平衡条件下的最低销售价格,并与传统共沉淀法比较。技术分析中物料与能量平衡计算结果表明,火焰喷雾热解法可使CO2排放、电力消耗和用水消耗分别降低约41%、85%和29%。经济分析结果显示,盈亏平衡条件下NCM811材料的最低售价为221.1 CNY/kg,较当前市场销售价低约18%。最后,针对材料最低售价的敏感性分析结果显示,原材料成本是最敏感的因素,当原料价格降低25%时,盈亏平衡点售价可达172.0 CNY/kg。
中图分类号:
杜文, 王君雷, 徐运飞, 李世龙, 王昆. 火焰喷雾热解法生产锂离子电池高镍三元正极材料的技术经济分析[J]. 储能科学与技术, 2024, 13(1): 345-357.
Wen DU, Junlei WANG, Yunfei XU, Shilong LI, Kun WANG. Techno-economic analysis for the preparation of Li-ion battery's ternary cathode material using flame spray pyrolysis[J]. Energy Storage Science and Technology, 2024, 13(1): 345-357.
表2
主要设备"
序号 | 工序 | 设备名称 | 数量/台(套) | 设备单价/万 | 投资额/万 | 额定功率/kW |
---|---|---|---|---|---|---|
1a | 预混料阶段 | 吨包投料站 | 3 | 13.5 | 40.5 | 9.7 |
1b | 精密称重设备 | 6 | 28.3 | 169.8 | 0.1 | |
1c | 搅拌混料设备 | 3 | 35.0 | 105.0 | 65.0 | |
2a | 火焰喷雾热解阶段 | 雾化设备 | 10 | 10.0 | 100.0 | 0.1 |
2b | 火焰喷雾热解燃烧器 | 10 | 40.0 | 400.0 | 0.2 | |
2c | 天然气增压机 | 1 | 76.5 | 76.5 | 160 | |
2d | 空气压缩机 | 30 | 0.6 | 18.0 | 10 | |
3 | 烧结阶段 | 烧结推板窑 | 2 | 900.0 | 1800.0 | 320 |
4 | 粉碎阶段 | 气流粉碎系统 | 3 | 300.0 | 900.0 | 200 |
5 | 合批阶段 | 螺旋混料合批机 | 4 | 73.1 | 292.4 | 2.2 |
6 | 除铁阶段 | 电磁除铁机 | 4 | 80.0 | 320.0 | 15 |
7 | 封包装阶段 | 封装机 | 2 | 55.00 | 110.00 | 2 |
8a | 辅助生产设备 | 料仓、阀件、安全筛 | 1 | 650.0 | 650.0 | 0.2 |
8b | 车间收尘系统 | 10 | 18.0 | 180.0 | 50 | |
8c | 料仓破拱设备 | 15 | 3.3 | 49.5 | 1.9 | |
8d | 气力输送系统 | 4 | 86.3 | 345.2 | 50 | |
8e | 外轨循环线 | 2 | 322.1 | 644.2 | 30 | |
8f | 仓顶除尘器 | 6 | 6.8 | 40.8 | 15 | |
8g | SCR烟气脱硝塔 | 1 | 68.0 | 68.0 | 100 |
1 | 刘卓然, 陈健, 林凯, 等. 国内外电动汽车发展现状与趋势[J]. 电力建设, 2015, 36(7): 25-32. |
LIU Z R, CHEN J, LIN K, et al. Domestic and foreign present situation and the tendency of electric vehicles[J]. Electric Power Construction, 2015, 36(7): 25-32. | |
2 | 洪吉超, 梁峰伟, 杨京松, 等. 新能源汽车产业及其技术发展现状与展望[J]. 科技导报, 2023, 41(5): 49-59. |
HONG J C, LIANG F W, YANG J S, et al. New energy vehicle industry and technology development status[J]. Science & Technology Review, 2023, 41(5): 49-59. | |
3 | AGENCY I E. Global EV Outlook 2023[M]. OECD, 2023. |
4 | WOOD D L, LI J L, DANIEL C. Prospects for reducing the processing cost of lithium ion batteries[J]. Journal of Power Sources, 2015, 275: 234-242. |
5 | 胡国荣, 杜柯, 彭忠东. 锂离子电池正极材料: 原理、性能与生产工艺[M]. 北京: 化学工业出版社, 2017. |
HU G R, DU K, PENG Z D. Cathode materials for lithium ion batteries[M]. Beijing: Chemical Industry Press, 2017. | |
6 | 栗志展, 秦金磊, 梁嘉宁, 等. 高镍三元层状锂离子电池正极材料: 研究进展、挑战及改善策略[J]. 储能科学与技术, 2022, 11(9): 2900-2920. |
LI Z Z, QIN J L, LIANG J N, et al. High-nickel ternary layered cathode materials for lithium-ion batteries: Research progress, challenges and improvement strategies[J]. Energy Storage Science and Technology, 2022, 11(9): 2900-2920. | |
7 | STROBEL R, PRATSINIS S E. Flame aerosol synthesis of smart nanostructured materials[J]. Journal of Materials Chemistry, 2007, 17(45): 4743-4756. |
8 | RICHARDS W D, TSUJIMURA T, MIARA L J, et al. Design and synthesis of the superionic conductor Na10SnP2S12[J]. Nature Communications, 2016, 7: 11009. |
9 | YI E, TEMECHE E, LAINE R M. Superionically conducting β''-Al2O3 thin films processed using flame synthesized nanopowders[J]. Journal of Materials Chemistry A, 2018, 6(26): 12411-12419. |
10 | LIU S Y, ZHOU C, WANG Y, et al. Ce-substituted nanograin Na3Zr2Si2PO12 prepared by LF-FSP as sodium-ion conductors[J]. ACS Applied Materials & Interfaces, 2020, 12(3): 3502-3509. |
11 | KIM J H, YI J H, KO Y N, et al. Electrochemical properties of nano-sized LiNi1/3Co1/3Mn1/3O2 powders in the range from 56 to 101 nm prepared by flame spray pyrolysis[J]. Materials Chemistry and Physics, 2012, 134(1): 254-259. |
12 | WANG Y, ROLLER J, MARIC R. Morphology-controlled one-step synthesis of nanostructured LiNi1/3Mn1/3Co1/3O2 electrodes for Li-ion batteries[J]. ACS Omega, 2018, 3(4): 3966-3973. |
13 | ERNST F O, KAMMLER H K, ROESSLER A, et al. Electrochemically active flame-made nanosized spinels: LiMn2O4, Li4Ti5O12 and LiFe5O8[J]. Materials Chemistry and Physics, 2007, 101(2/3): 372-378. |
14 | CHEW S Y, PATEY T J, WASER O, et al. Thin nanostructured LiMn2O4 films by flame spray deposition and in situ annealing method[J]. Journal of Power Sources, 2009, 189(1): 449-453. |
15 | WASER O, BÜCHEL R, HINTENNACH A, et al. Continuous flame aerosol synthesis of carbon-coated nano-LiFePO4 for Li-ion batteries[J]. Journal of Aerosol Science, 2011, 42(10): 657-667. |
16 | KADOMA Y, KIM J M, ABIKO K, et al. Optimization of electrochemical properties of LiFePO4/C prepared by an aqueous solution method using sucrose[J]. Electrochimica Acta, 2010, 55(3): 1034-1041. |
17 | YAMADA M, BI D Y, KODERA T, et al. Mass production of cathode materials for lithium ion battery by flame type spray pyrolysis[J]. Journal of the Ceramic Society of Japan, 2009, 117(1369): 1017-1020. |
18 | OGIHARA T, KODERA T, MYOUJIN K, et al. Preparation and electrochemical properties of cathode materials for lithium ion battery by aerosol process[J]. Materials Science and Engineering: B, 2009, 161(1/2/3): 109-114. |
19 | OLJACA M, BLIZANAC B, DU PASQUIER A, et al. Novel Li(Ni1/3Co1/3Mn1/3)O2 cathode morphologies for high power Li-ion batteries[J]. Journal of Power Sources, 2014, 248: 729-738. |
20 | ZHANG J N, SINGH G, XU S Q, et al. A scalable approach of using biomass derived glycerol to synthesize cathode materials for lithium-ion batteries[J]. Journal of Cleaner Production, 2020, 271: 122518. |
21 | ZHANG J N, XU S Q, HAMAD K I, et al. High retention rate NCA cathode powders from spray drying and flame assisted spray pyrolysis using glycerol as the solvent[J]. Powder Technology, 2020, 363: 1-6. |
22 | ABRAM C, SHAN J N, YANG X F, et al. Flame aerosol synthesis and electrochemical characterization of Ni-rich layered cathode materials for Li-ion batteries[J]. ACS Applied Energy Materials, 2019, 2(2): 1319-1329. |
23 | ZANG G Y, ZHANG J N, XU S Q, et al. Techno-economic analysis of cathode material production using flame-assisted spray pyrolysis[J]. Energy, 2021, 218: 119504. |
24 | ZHANG J N, MULDOON V L, DENG S L. Accelerated synthesis of Li(Ni0.8Co0.1Mn0.1)O2 cathode materials using flame-assisted spray pyrolysis and additives[J]. Journal of Power Sources, 2022, 528: 231244. |
25 | 中华人民共和国工业和信息化部. 镍钴锰酸锂: YS/T 798—2012[S]. 北京: 中国标准出版社, 2012. |
Ministry of Industry and Information of the People's Republic of China. Lithium nickel cobalt manganese oxide: YS/T 798—2012[S]. Beijing: Standards Press of China, 2012. | |
26 | 谭青, 冯雅晨. 我国烟气脱硝行业现状与前景及SCR脱硝催化剂的研究进展[J]. 化工进展, 2011, 30(S1): 709-713. |
TAN Q, FENG Y C. Present status and perspective of China's flue gas denitration industry and research progress of SCR catalysts[J]. Chemical Industry and Engineering Progress, 2011, 30(S1): 709-713. | |
27 | AHMED S, NELSON P A, GALLAGHER K G, et al. Cost and energy demand of producing nickel manganese cobalt cathode material for lithium ion batteries[J]. Journal of Power Sources, 2017, 342: 733-740. |
28 | 中华人民共和国工业和信息化部. 电池级碳酸锂: YS/T 582—2013[S]. 北京: 中国质检出版社, 2013. |
Ministry of Industry and Information of the People's Republic of China. Battery grade lithium carbonate: YS/T 582—2013[S]. , 2013. | |
29 | 中华人民共和国工业和信息化部. 电池用硫酸镍:HG/T 5919-2021[S]. 北京:中国标准出版社, 2021. |
Ministry of Industry and Information Technology of the People's Republic of China. Nickel sulfate fir battery materials: HG/T 5919-2021[S]. Beijing:Standards Press of China, 2021. | |
30 | 中华人民共和国工业和信息化部. 电池用硫酸钴:HG/T 5918-2021[S]. 北京:中国标准出版社, 2021. |
Ministry of Industry and Information Technology of the People's Republic of China. Cobalt sulfate fir battery materials: HG/T 5918-2021[S]. Beijing:Standards Press of China, 2021. | |
31 | 中华人民共和国工业和信息化部. 电池用硫酸锰:HG/T 4823-2015[S]. 北京:中国标准出版社, 2015. |
Ministry of Industry and Information Technology of the People's Republic of China. Manganese sulfate fir battery materials: HG/T 4823-2015 [S]. Beijing:Standards Press of China, 2015. | |
32 | 杨利新. 三元和富锂正极材料的热力学性质计算模型研究[D]. 兰州: 兰州理工大学, 2019. |
YANG L X. Model for the calculation of the thermodynamic properties of ternary and lithium-rich cathode materials[D]. Lanzhou: Lanzhou University of Technology, 2019. | |
33 | 陈家俊. 三元锂离子动力电池系统全生命周期研究[D]. 广州: 广州大学, 2023. |
CHEN J J. Study on the whole life cycle of ternary lithium-ion power battery system[D].Guangzhou: Guangzhou University, 2023. | |
34 | 中国有色金属工业协会, 中国有色金属学会. 绿色设计产品评价技术规范 镍钴锰氢氧化物:TCNIA 0046-2020 [S]. 北京:冶金工业出版社, 2020. |
China Non-Ferrous Metals Industry Association, The Nonferrous Metals Society of China. Technical specification for green-design product assessment—Nickel cobalt manganese composite hydroxide: TCNIA 0046-2020 [S]. Beijing: Metallurgical Industry Press, 2020. | |
35 | 中国有色金属工业协会, 中国有色金属学会. 绿色设计产品评价技术规范 镍钴锰酸锂:TCNIA 0047-2020 [S]. 北京:冶金工业出版社, 2020.. |
China Non-Ferrous Metals Industry Association, The Nonferrous Metals Society of China. Technical specification for green-design product assessment—Lithium nickel cobalt manganese oxide: TCNIA 0046-2020 [S]. Beijing: Metallurgical Industry Press, 2020. | |
36 | PARSONS S, ABELN F, MCMANUS M C, et al. Techno-economic analysis (TEA) of microbial oil production from waste resources as part of a biorefinery concept: assessment at multiple scales under uncertainty[J]. Journal of Chemical Technology & Biotechnology, 2019, 94(3):701-711. |
37 | 刘晓君. 技术经济学[M]. 北京: 高等教育出版社, 2014. |
LIU X J. Technological economics[M]. Beijing: Higher Education Press, 2014. | |
38 | 北京当升材料科技股份有限公司. 江苏当升新型动力锂电正极材料产业化开发项目可行性研究报告[R]. 北京:当升科技, 2016. |
Beijing Easpring Material Technology Co., Ltd. Feasibility Study Report on the Project of Power Lithium Battery Positive Electrode Materials in Jiangsu[R]. Beijing: Easpring Material Technology Co., Ltd., 2016. | |
39 | 北京当升材料科技股份有限公司. 常州5万吨锂电新材料产业基地项目可行性研究报告[R]. 北京:当升科技, 2018. |
Beijing Easpring Material Technology Co., Ltd. Feasibility Study Report on the Project of Power Lithium Battery Positive Electrode Materials in Changzhou[R]. Beijing: Easpring Material Technology Co., Ltd., 2018. | |
40 | 乳源东阳光磁性材料有限公司. 乳源东阳光磁性材料有限公司年产1万吨新能源用锂离子电池正极材料建设项目竣工环境保护验收监测报告[R]. 韶关:乳源东阳光磁性材料有限公司, 2017. |
Ruyuandong Sunshine Magnetic Material Co., Ltd. Environmental protection acceptance monitoring report on the completion of the construction project of lithium-ion battery cathode materials for new energy with an annual output of 10000 tons[R]. Shaoguan: Ruyuandong Sunshine Magnetic Material Co., Ltd., 2017. | |
41 | 住建部,财政部. 关于印发《建筑安装工程费用项目组成》的通知[S]. 建标〔2013〕44号, 2013. |
Ministry of Housing and Urban Rural Development of the People's Republic of China, Ministry of Finance of the People's Republic of China. Notice on issuing the composition of construction and installation engineering cost items[S]. Jianbiao[2013]44, 2013. | |
42 | 国家发展改革委, 建设部. 建设项目经济评价方法与参数(第三版)[M]. 北京:中国计划出版社, 2006. |
National Development and Reform Commission, Ministry of Housing and Urban Rural Development of the People's Republic of China. Economic evaluation methods and parameters for construction projects (Third Edition)[M]. Beijing: China Planning Press, 2006. | |
43 | Mann MK, Spath PL. The net CO2 emissions and energy balances of biomass and coal-fired power systems[C]. Proceedings of the fourth biomass conference of the Americas. Oakland, California: Cite seer:1999, 379-385. |
44 | 刘行, 叶康涛, 陆正飞. 加速折旧政策与企业投资——基于"准自然实验"的经验证据[J]. 经济学(季刊), 2019, 18(1): 213-234. |
LIU G, YE K T, LU Z F. Accelerated depreciation policy and firm investment—Evidence from a quasi-natural experiment in China[J]. China Economic Quarterly, 2019, 18(1): 213-234. | |
45 | Chew VK, Minato N, Nakano M. Business system model of battery swapping management for transportation fleet and energy storage system[C]. Proceedings pf the 33rd international conference of the system. Dynamics Society; 2015. |
46 | 刘宝权. 设备管理与维修[M]. 北京: 机械工业出版社, 2012. |
LIU B Q. Plant maintenance engineering[M]. Beijing: China Machine Press, 2012. | |
47 | 杨航, 郑成航, 金侃, 等. 燃煤电厂选择性催化还原脱硝系统运行成本[J]. 浙江大学学报(工学版), 2017, 51(2): 363-369. |
YANG H, ZHENG C H, JIN K, et al. Analysis on operation cost of SCR system in coal-fired power plant[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(2): 363-369. |
[1] | 李晨威, 徐世国, 余海峰, 于松民, 江浩. 镁掺杂改性LiMn0.5Fe0.5PO4/C正极材料与性能研究[J]. 储能科学与技术, 2024, 13(6): 1767-1774. |
[2] | 孙琦, 彭豪, 孟庆国, 孔德凯, 冯睿. 极限工况下储能电池包热适应性[J]. 储能科学与技术, 2024, 13(6): 2039-2043. |
[3] | 张玉超, 张凤姣, 娄伟, 昝飞翔, 王琳玲, 盛安旭, 吴晓辉, 陈静. 废旧锂离子电池有价金属资源化利用的转化过程和潜在环境影响[J]. 储能科学与技术, 2024, 13(6): 1861-1870. |
[4] | 汤旭旭, 许铤, 储德韧. 镍钴锰三元锂离子电池不同电压下浮充失效机理及热安全研究[J]. 储能科学与技术, 2024, 13(6): 2044-2053. |
[5] | 钟国彬, 姚鑫, 刘永超, 侯倩, 项宏发. 锂离子电池高安全复合隔膜的挑战和未来展望[J]. 储能科学与技术, 2024, 13(6): 1794-1806. |
[6] | 唐梓巍, 师玉璞, 张雨禅, 周奕博, 杜慧玲. 基于Informer神经网络的锂离子电池容量退化轨迹预测[J]. 储能科学与技术, 2024, 13(5): 1658-1666. |
[7] | 缪胤宝, 张文华, 刘伟昊, 王帅, 陈哲, 彭望, 曾杰. 富锂正极材料Li1.2Ni0.13Co0.13Mn0.54O2 的制备及性能[J]. 储能科学与技术, 2024, 13(5): 1427-1434. |
[8] | 廉高棨, 叶敏, 王桥, 李岩, 麻玉川, 孙乙丁, 杜鹏辉. 基于改进模型与优化自适应CKF的锂离子电池快速变温工况下的SOC估计[J]. 储能科学与技术, 2024, 13(5): 1667-1676. |
[9] | 吕兆财, 王玉西, 汪智涛, 孙晓辉, 李景康. 热辊压对锂离子电池正极极片性能的影响[J]. 储能科学与技术, 2024, 13(5): 1443-1450. |
[10] | 李润源, 郭傅傲, 赵钢超. 集装箱式锂离子电池储能系统消防安全早期预警方法[J]. 储能科学与技术, 2024, 13(5): 1595-1602. |
[11] | 何林, 刘江岩, 刘彬, 李夔宁, 代帅. 数据分布多样性对锂电池SOC预测的泛化影响[J]. 储能科学与技术, 2024, 13(5): 1677-1687. |
[12] | 韩亚露, 陈奕戈, 邸会芳, 林杰欢, 王振兵, 张扬, 苏方远, 陈成猛. 锂离子电池不同服役工况下失效研究进展[J]. 储能科学与技术, 2024, 13(4): 1338-1349. |
[13] | 袁悦博, 王贺武, 孔祥栋, 蒲明伟, 孙玉坤, 韩雪冰, 欧阳明高. 金属异物缺陷演化特性及其对产线 K 值的影响机制[J]. 储能科学与技术, 2024, 13(4): 1197-1204. |
[14] | 李革, 孔祥栋, 孙跃东, 陈飞, 袁悦博, 韩雪冰, 郑岳久. 基于产线大数据的锂离子电池一致性动态特性分选方法[J]. 储能科学与技术, 2024, 13(4): 1188-1196. |
[15] | 刘淳正, 来沛霈, 孙卓, 聂耳, 张哲娟. 构造凹陷的硅碳颗粒提高锂离子电池负极电化学性能[J]. 储能科学与技术, 2024, 13(4): 1302-1309. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||