1 |
万燕鸣, 熊亚林, 王雪颖. 全球主要国家氢能发展战略分析[J]. 储能科学与技术, 2022, 11(10): 3401-3410. DOI: 10.19799/j.cnki.2095-4239.2022.0132.
|
|
WAN Y M, XIONG Y L, WANG X Y. Strategic analysis of hydrogen energy development in major countries[J]. Energy Storage Science and Technology, 2022, 11(10): 3401-3410. DOI: 10.19799/j.cnki.2095-4239.2022.0132.
|
2 |
刘玮, 万燕鸣, 熊亚林, 等. "双碳" 目标下我国低碳清洁氢能进展与展望[J]. 储能科学与技术, 2022, 11(2): 635-642. DOI: 10.19799/j.cnki.2095-4239.2021.0385.
|
|
LIU W, WAN Y M, XIONG Y L, et al. Outlook of low carbon and clean hydrogen in China under the goal of "carbon peak and neutrality"[J]. Energy Storage Science and Technology, 2022, 11(2): 635-642. DOI: 10.19799/j.cnki.2095-4239.2021.0385.
|
3 |
刘坚. 适应可再生能源消纳的储能技术经济性分析[J]. 储能科学与技术, 2022, 11(1): 397-404. DOI: 10.19799/j.cnki.2095-4239. 2021.0379.
|
|
LIU J. Economic assessment for energy storage technologies adaptive to variable renewable energy[J]. Energy Storage Science and Technology, 2022, 11(1): 397-404. DOI: 10.19799/j.cnki.2095-4239.2021.0379.
|
4 |
李璐伶, 樊栓狮, 陈秋雄, 等. 储氢技术研究现状及展望[J]. 储能科学与技术, 2018, 7(4): 586-594. DOI: 10.12028/j.issn.2095-4239. 2018.0062.
|
|
LI L L, FAN S S, CHEN Q X, et al. Hydrogen storage technology: Current status and prospects[J]. Energy Storage Science and Technology, 2018, 7(4): 586-594. DOI: 10.12028/j.issn.2095-4239.2018.0062.
|
5 |
贾海平, 王雅仪, 葛丽莎, 等. 储氢装备关键技术研究进展[J]. 西安工业大学学报, 2024, 44(4): 441-462. DOI: 10.16185/j.jxatu.edu.cn.2024.04.201.
|
|
JIA H P, WANG Y Y, GE L S, et al. Review on key technologies of hydrogen storage equipment[J]. Journal of Xi'an Technological University, 2024, 44(4): 441-462. DOI: 10.16185/j.jxatu.edu.cn.2024.04.201.
|
6 |
闫光龙, 郭克星, 赵苗苗. 储氢技术的研究现状及进展[J]. 天然气与石油, 2023, 41(5): 1-9. DOI: 10.3969/j.issn.1006-5539. 2023.05.001.
|
|
YAN G L, GUO K X, ZHAO M M. Status and progress on hydrogen storage technology research[J]. Natural Gas and Oil, 2023, 41(5): 1-9. DOI: 10.3969/j.issn.1006-5539.2023.05.001.
|
7 |
张慧敏, 田磊, 孙云峰, 等. 有机液体储氢研究进展及管道运输的思考[J]. 油气储运, 2023, 42(4): 375-390. DOI: 10.6047/j.issn.1000-8241.2023.04.002.
|
|
ZHANG H M, TIAN L, SUN Y F, et al. Progress of research on hydrogen storage in organic liquid and thinking about pipeline transportation[J]. Oil & Gas Storage and Transportation, 2023, 42(4): 375-390. DOI: 10.6047/j.issn.1000-8241.2023.04.002.
|
8 |
孙峰, 彭浩, 凌祥. 中高温热化学反应储能研究进展[J]. 储能科学与技术, 2015, 4(6): 577-584.
|
|
SUN F, PENG H, LING X. Progress in medium to high temperature thermochemical energy storage technologies[J]. Energy Storage Science and Technology, 2015, 4(6): 577-584.
|
9 |
陈健, 李友势, 陆新元, 等. CeO2负载钙铜复合纳米小球的合成及其热化学储能特性[J]. 华南师范大学学报(自然科学版), 2024, 56(2): 55-61.
|
|
CHEN J, LI Y S, LU X Y, et al. Investigation on synthesis of CeO2-stabilized CaO/CuO composite nanospheres and their thermochemical energy storage characteristics[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(2): 55-61.
|
10 |
陈健, 李铭迪, 胡焰彬, 等. 基于钙基吸收剂/载氧体的可再生能源存储利用方法及系统: CN114307585A[P]. 2022-04-12.
|
11 |
QIN C L, FENG B, YIN J J, et al. Matching of kinetics of CaCO3 decomposition and CuO reduction with CH4 in Ca-Cu chemical looping[J]. Chemical Engineering Journal, 2015, 262: 665-675. DOI: 10.1016/j.cej.2014.10.030.
|
12 |
DA Y, ZHOU J L. Multi-doping strategy modified calcium-based materials for improving the performance of direct solar-driven calcium looping thermochemical energy storage[J]. Solar Energy Materials and Solar Cells, 2022, 238: 111613. DOI: 10.1016/j.solmat.2022.111613.
|
13 |
FERNÁNDEZ J R, ALARCÓN J M, ABANADES J C. Investigation of a fixed-bed reactor for the calcination of CaCO3 by the simultaneous reduction of CuO with a fuel gas[J]. Industrial & Engineering Chemistry Research, 2016, 55(18): 5128-5132. DOI: 10.1021/acs.iecr.5b04073.
|
14 |
陈健, 孙世超, 李铭迪, 等. 钙铜复合吸收剂CO2捕集性能优化研究进展[J]. 华南师范大学学报(自然科学版), 2022, 54(3): 43-52. DOI: 10.6054/j.jscnun.2022043.
|
|
CHEN J, SUN S C, LI M D, et al. The progress in the research on optimizing CO2 capture performance of CaO/CuO composites[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(3): 43-52. DOI: 10.6054/j.jscnun.2022043.
|
15 |
KIERZKOWSKA A M, MÜLLER C R. Development of calcium-based, copper-functionalised CO2 sorbents to integrate chemical looping combustion into calcium looping[J]. Energy & Environmental Science, 2012, 5(3): 6061-6065. DOI: 10.1039/C2EE03079A.
|
16 |
MA J C, MEI D F, PENG W W, et al. On the high performance of a core-shell structured CaO-CuO/MgO@Al2O3 material in calcium looping integrated with chemical looping combustion (CaL-CLC)[J]. Chemical Engineering Journal, 2019, 368: 504-512. DOI: 10.1016/j.cej.2019.02.188.
|
17 |
陈健, 李友势, 黄昌强, 等. 钙铜复合吸收剂的一步法合成及其CO2捕集性能[J]. 华南师范大学学报(自然科学版), 2023, 55(5): 1-7. DOI: 10.6054/j.jscnun.2023057.
|
|
CHEN J, LI Y S, HUANG C Q, et al. Investigation on one-step synthesis of CaO/CuO composite pellets and their CO2 capture performance[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(5): 1-7. DOI: 10.6054/j.jscnun.2023057.
|
18 |
XING S, HAN R, WANG Y, et al. Facile fabrication of aluminum-oxide deposited CuO/CaO composites with enhanced stability and CO2 capture capacity for combined Ca/Cu looping process[J]. Microporous and Mesoporous Materials, 2022, 337: 111923. DOI: 10.1016/j.micromeso.2022.111923.
|
19 |
QIN C L, YIN J J, LIU W Q, et al. Behavior of CaO/CuO based composite in a combined calcium and copper chemical looping process[J]. Industrial & Engineering Chemistry Research, 2012, 51(38): 12274-12281. DOI: 10.1021/ie300677s.
|
20 |
NAEEM M A, ARMUTLULU A, IMTIAZ Q, et al. CaO-based CO2 sorbents effectively stabilized by metal oxides[J]. Chemphyschem, 2017, 18(22): 3280-3285. DOI: 10.1002/cphc.201700695.
|
21 |
MANOVIC V, WU Y H, HE I, et al. Core-in-shell CaO/CuO-based composite for CO2 capture[J]. Industrial & Engineering Chemistry Research, 2011, 50(22): 12384-12391. DOI: 10.1021/ie201427g.
|
22 |
张振民, 陈健, 王研凯, 等. 惰性载体支撑钙铜复合吸收剂的碳酸化性能及其动力学分析[J]. 石油学报(石油加工), 2020, 36(6): 1389-1397.
|
|
ZHANG Z M, CHEN J, WANG Y K, et al. Analysis of carbonation and kinetic performance of inert support-stabilized CaO/CuO composites[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(6): 1389-1397.
|
23 |
WESTBYE A, ARANDA A, DIETZEL P D C, et al. The effect of Copper(II) oxide loading and precursor on the cyclic stability of combined mayenite based materials for calciumcopper looping technology[J]. International Journal of Hydrogen Energy, 2019, 44(25): 12604-12616. DOI: 10.1016/j.ijhydene.2018.11.200.
|
24 |
KAZI S S, ARANDA A, DI FELICE L, et al. Development of cost effective and high performance composite for CO2 capture in Ca-Cu looping process[J]. Energy Procedia, 2017, 114: 211-219. DOI: 10.1016/j.egypro.2017.03.1163.
|
25 |
GUO H X, KOU X C, ZHAO Y J, et al. Effect of synergistic interaction between Ce and Mn on the CO2 capture of calcium-based sorbent: Textural properties, electron donation, and oxygen vacancy[J]. Chemical Engineering Journal, 2018, 334: 237-246. DOI: 10.1016/j.cej.2017.09.198.
|
26 |
LIU H, ZHANG J S, WEI J J. Mn and Mg synergistically stabilized CaO as an effective thermochemical material for solar energy storage[J]. Solar Energy Materials and Solar Cells, 2023, 252: 112202. DOI: 10.1016/j.solmat.2023.112202.
|
27 |
KIERZKOWSKA A M, MÜLLER C R. Sol-gel-derived, calcium-based, copper-functionalised CO2 sorbents for an integrated chemical looping combustion-calcium looping CO2 capture process[J]. ChemPlusChem, 2013, 78(1): 92-100. DOI: 10.1002/cplu.201200232.
|