13 |
CHEN X, CHEN X R, HOU T Z, et al. Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes[J]. Science Advances, 2019, 5(2): eaau7728. DOI: 10.1126/sciadv.aau7728.
|
14 |
CHEN M Z, ZHOU L M, WANG T, et al. Nitrogen as an anionic center/dopant for next-generation high-performance lithium/sodium-ion battery electrodes: Key scientific issues, challenges and perspectives[J]. Advanced Functional Materials, 2023, 33(20): 2214786. DOI: 10.1002/adfm.202214786.
|
15 |
肖士洁. 聚丙烯腈(PAN)热稳定化反应机理及动力学研究[D]. 北京: 北京化工大学, 2012.
|
|
XIAO S J. Mechanism and kinetics during thermal stabilization of polyacrylonitrile[D]. Beijing: Beijing University of Chemical Technology, 2012.
|
1 |
ANDERSEN H L, DJUANDHI L, MITTAL U, et al. Strategies for the analysis of graphite electrode function[J]. Advanced Energy Materials, 2021, 11(48): 2102693. DOI: 10.1002/aenm.202102693.
|
2 |
丁晓博, 黄倩晖, 熊训辉. 锂离子电池快充石墨负极研究与应用[J]. 物理化学学报, 2022, 38(11): 89-104. DOI: 10.3866/PKU.WHXB202204057.
|
|
DING X B, HUANG Q H, XIONG X H. Research and application of fast-charging graphite anodes for lithium-ion batteries[J]. Acta Physico-Chimica Sinica, 2022, 38(11): 89-104. DOI: 10.3866/PKU.WHXB202204057.
|
3 |
SARKAR A, SHROTRIYA P, NLEBEDIM I C. Anodic interfacial evolution in extremely fast charged lithium-ion batteries[J]. ACS Applied Energy Materials, 2022, 5(3): 3179-3188. DOI: 10.1021/acsaem.1c03803.
|
4 |
张佳怡, 翁素婷, 王兆翔, 等. 石墨负极界面SEI膜与锂离子电池热失控[J]. 储能科学与技术, 2023, 12(7): 2105-2118. DOI: 10.19799/j.cnki.2095-4239.2023.0253.
|
|
ZHANG J Y, WENG S T, WANG Z X, et al. Solid electrolyte interphase (SEI) on graphite anode correlated with thermal runaway of lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(7): 2105-2118. DOI: 10.19799/j.cnki.2095-4239.2023.0253.
|
5 |
HE Y, JIANG L, CHEN T W, et al. Progressive growth of the solid-electrolyte interphase towards the Si anode interior causes capacity fading[J]. Nature Nanotechnology, 2021, 16(10): 1113-1120. DOI: 10.1038/s41565-021-00947-8.
|
6 |
齐仲辉, 徐有红, 刘洪波, 等. 整形和表面改性对人造石墨负极材料性能的影响[J]. 炭素技术, 2012, 31(1): 1-5. DOI: 10.14078/j.cnki.1001-3741.2012.01.001.
|
|
QI Z H, XU Y H, LIU H B, et al. The influences of shaping and surface modification on the performance of artifical graphite anode materials[J]. Carbon Techniques, 2012, 31(1): 1-5. DOI: 10.14078/j.cnki.1001-3741.2012.01.001.
|
7 |
LI S Q, WANG K, ZHANG G F, et al. Fast charging anode materials for lithium-ion batteries: Current status and perspectives[J]. Advanced Functional Materials, 2022, 32(23): 2200796. DOI: 10.1002/adfm.202200796.
|
8 |
LIU P C, HAO H C, CELIO H, et al. Multifunctional separator allows stable cycling of potassium metal anodes and of potassium metal batteries[J]. Advanced Materials, 2022, 34(7): e2105855. DOI: 10.1002/adma.202105855.
|
9 |
卢健, 隋欣梦, 郝胜智, 等. 锂离子电池用石墨负极材料改性研究进展[J]. 表面技术, 2022, 51(8): 135-145. DOI: 10.16490/j.cnki.issn.1001-3660.2022.08.011.
|
|
LU J, SUI X M, HAO S Z, et al. Modification of graphite anode materials for lithium-ion batteries[J]. Surface Technology, 2022, 51(8): 135-145. DOI: 10.16490/j.cnki.issn.1001-3660.2022.08.011.
|
10 |
廖雅贇, 周峰, 张颖曦, 等. 锂离子电池快充石墨负极材料研究进展[J]. 储能科学与技术, 2024, 13(1): 130-142. DOI: 10.19799/j.cnki.2095-4239.2023.0777.
|
|
LIAO Y Y, ZHOU F, ZHANG Y X, et al. Research progress on fast-charging graphite anode materials for lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(1): 130-142. DOI: 10.19799/j.cnki.2095-4239.2023.0777.
|
11 |
FRATINI S, NIKOLKA M, SALLEO A, et al. Charge transport in high-mobility conjugated polymers and molecular semiconductors[J]. Nature Materials, 2020, 19(5): 491-502. DOI: 10.1038/s41563-020-0647-2.
|
12 |
GUO X G, FACCHETTI A. The journey of conducting polymers from discovery to application[J]. Nature Materials, 2020, 19(9): 922-928. DOI: 10.1038/s41563-020-0778-5.
|