[1] |
AYERBE E, BERECIBAR M, CLARK S, et al. Digitalization of battery manufacturing: Current status, challenges, and opportunities[J]. Advanced Energy Materials, 2022, 12(17): 2102696. DOI: 10. 1002/aenm.202102696.
|
[2] |
LV C D, ZHOU X, ZHONG L X, et al. Machine learning: An advanced platform for materials development and state prediction in lithium-ion batteries[J]. Advanced Materials, 2022, 34(25): 2101474. DOI: 10.1002/adma.202101474.
|
[3] |
LIU Y Y, SHI H D, WU Z S. Recent status, key strategies and challenging perspectives of fast-charging graphite anodes for lithium-ion batteries[J]. Energy & Environmental Science, 2023, 16(11): 4834-4871. DOI: 10.1039/D3EE02213G.
|
[4] |
MAHMOOD N, TANG T Y, HOU Y L. Nanostructured anode materials for lithium ion batteries: Progress, challenge and perspective[J]. Advanced Energy Materials, 2016, 6(17): 1600374. DOI: 10.1002/aenm.201600374.
|
[5] |
ZHAO Y, FU Y L, MENG Y, et al. Challenges and strategies of lithium-ion mass transfer in natural graphite anode[J]. Chemical Engineering Journal, 2024, 480: 148047. DOI: 10.1016/j.cej. 2023.148047.
|
[6] |
SON Y, LEE T, WEN B, et al. High energy density anodes using hybrid Li intercalation and plating mechanisms on natural graphite[J]. Energy & Environmental Science, 2020, 13(10): 3723-3731. DOI: 10.1039/D0EE02230F.
|
[7] |
KIM M, KIM I, KIM J, et al. Lifetime prediction of lithium ion batteries by using the heterogeneity of graphite anodes[J]. ACS Energy Letters, 2023, 8(7): 2946-2953. DOI: 10.1021/acsenergylett. 3c00695.
|
[8] |
YEO G, SUNG J, CHOI M, et al. Dendrite-free lithium deposition on conventional graphite anode by growth of defective carbon-nanotube for lithium-metal/ion hybrid batteries[J]. Journal of Materials Chemistry A, 2022, 10(24): 12938-12945. DOI: 10.1039/D2TA01907H.
|
[9] |
肖鹏飞, 梅琳, 陈立宝. 多元包覆石墨复合负极材料的低温电化学储锂性能研究[J]. 储能科学与技术, 2024, 13(7): 2116-2123. DOI: 10.19799/j.cnki.2095-4239.2024.0408.
|
|
XIAO P F, MEI L, CHEN L B. Multicomponent-coated graphite composite anodes for low-temperature electrochemical energy storage[J]. Energy Storage Science and Technology, 2024, 13(7): 2116-2123. DOI: 10.19799/j.cnki.2095-4239.2024.0408.
|
[10] |
HOSHI K, OHTA N, NAGAOKA K, et al. Production and advantages of carbon-coated graphite for the anode of lithium ion rechargeable batteries[J]. Carbon, 2010, 48(4): 1322. DOI: 10. 1016/j.carbon.2009.11.003.
|
[11] |
廖雅贇, 周峰, 张颖曦, 等. 锂离子电池快充石墨负极材料研究进展[J]. 储能科学与技术, 2024, 13(1): 130-142. DOI: 10.19799/j.cnki. 2095-4239.2023.0777.
|
|
LIAO Y Y, ZHOU F, ZHANG Y X, et al. Research progress on fast-charging graphite anode materials for lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(1): 130-142. DOI: 10.19799/j.cnki.2095-4239.2023.0777.
|
[12] |
LIU T C, LIN L P, BI X X, et al. In situ quantification of interphasial chemistry in Li-ion battery[J]. Nature Nanotechnology, 2018, 14(1): 50-56. DOI: 10.1038/s41565-018-0284-y.
|
[13] |
TANG Z M, XU L, XIE C, et al. Synthesis of CuCo2S4@Expanded Graphite with crystal/amorphous heterointerface and defects for electromagnetic wave absorption[J]. Nature Communications, 2023, 14: 5951. DOI: 10.1038/s41467-023-41697-6.
|
[14] |
XU R H, LI X H, TANG S Q, et al. Quantitative failure analysis of lithium-ion batteries based on direct current internal resistance decomposition model[J]. Applied Energy, 2024, 371: 123630. DOI: 10.1016/j.apenergy.2024.123630.
|
[15] |
HAN B, ZOU Y C, XU G Y, et al. Additive stabilization of SEI on graphite observed using cryo-electron microscopy[J]. Energy & Environmental Science, 2021, 14(9): 4882-4889. DOI: 10.1039/D1EE01678D.
|
[16] |
王灿, 马盼, 祝国梁, 等. 丙烯酸锂包覆天然石墨对其电化学性能的影响[J]. 储能科学与技术, 2022, 11(6): 1706-1714. DOI: 10.19799/j.cnki.2095-4239.2021.0556.
|
|
WANG C, MA P, ZHU G L, et al. Effect of lithium acrylic-coated nature graphite on its electrochemical properties[J]. Energy Storage Science and Technology, 2022, 11(6): 1706-1714. DOI: 10.19799/j.cnki.2095-4239.2021.0556.
|
[17] |
QIN L, XIAO N, ZHENG J F, et al. Localized high-concentration electrolytes boost potassium storage in high-loading graphite[J]. Advanced Energy Materials, 2019, 9(44): 1902618. DOI: 10.1002/aenm.201902618.
|
[18] |
ADENUSI H, CHASS G A, PASSERINI S, et al. Lithium batteries and the solid electrolyte interphase (SEI)—Progress and outlook[J]. Advanced Energy Materials, 2023, 13(10): 2203307. DOI: 10.1002/aenm.202203307.
|
[19] |
GU M Y, RAO A M, ZHOU J, et al. In situ formed uniform and elastic SEI for high-performance batteries[J]. Energy & Environmental Science, 2023, 16(3): 1166-1175. DOI: 10.1039/D2EE04148K.
|
[20] |
LIU Y H, YANG S, GUO H R, et al. Low LUMO energy carbon molecular interface to suppress electrolyte decomposition for fast charging natural graphite anode[J]. Energy Storage Materials, 2024, 73: 103806. DOI: 10.1016/j.ensm.2024.103806.
|
[21] |
WANG C, XING L D, VATAMANU J, et al. Overlooked electrolyte destabilization by manganese (II) in lithium-ion batteries[J]. Nature Communications, 2019, 10: 3423. DOI: 10.1038/s41467-019-11439-8.
|
[22] |
CHEN W B, WANG K, LI Y L, et al. Minimize the electrode concentration polarization for high-power lithium batteries[J]. Advanced Functional Materials, 2024, 34(52): 2410926. DOI: 10.1002/adfm.202410926.
|
[23] |
LI G X. Regulating mass transport behavior for high-performance lithium metal batteries and fast-charging lithium-ion batteries[J]. Advanced Energy Materials, 2021, 11(7): 2002891. DOI: 10.1002/aenm.202002891.
|
[24] |
ZHENG J X, LU J, AMINE K, et al. Depolarization effect to enhance the performance of lithium ions batteries[J]. Nano Energy, 2017, 33: 497-507. DOI: 10.1016/j.nanoen.2017.02.011.
|
[25] |
PENG J, TAN H D, WU Z Y, et al. Improving natural microcrystalline graphite performances by a dual modification strategy toward practical application of lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(51): 59552-59560. DOI: 10.1021/acsami.3c15484.
|
[26] |
WANG L F, ZHAO Y H, SUN J Y, et al. Artificially regulated interphase on natural graphite realizes rapid charge and durable high-temperature cycling of Li-ion batteries[J]. Carbon, 2024, 230: 119656. DOI: 10.1016/j.carbon.2024.119656.
|