储能科学与技术 ›› 2025, Vol. 14 ›› Issue (9): 3354-3372.doi: 10.19799/j.cnki.2095-4239.2025.0147

• 储能材料与器件 • 上一篇    

化学气相沉积法制备硅碳负极的研究进展

邓拓(), 周海平(), 刘煜, 刘畅, 李梓恺, 吴孟强   

  1. 电子科技大学材料与能源学院,四川 成都 610000
  • 收稿日期:2025-02-22 修回日期:2025-03-19 出版日期:2025-09-28 发布日期:2025-09-05
  • 通讯作者: 周海平 E-mail:1281471718@qq.com;haipzhou@uestc.edu.cn
  • 作者简介:邓拓(2000—),男,硕士研究生,研究方向为锂离子电池,E-mail:1281471718@qq.com
  • 基金资助:
    2023年中央在川高校院所"聚源兴川"项目,锂离子电池高容量硅基负极材料低成本制备技术成果转化(2023ZHJY0019)

Research progress in the preparation of silicon-carbons anode by chemical vapor deposition

Tuo DENG(), Haiping ZHOU(), Yu LIU, Chang LIU, Zikai LI, Mengqiang WU   

  1. School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610000, Sichuan, China
  • Received:2025-02-22 Revised:2025-03-19 Online:2025-09-28 Published:2025-09-05
  • Contact: Haiping ZHOU E-mail:1281471718@qq.com;haipzhou@uestc.edu.cn

摘要:

硅因具有高的理论比容量、高的元素丰度以及环境友好等特点而成为当前锂离子电池最有潜力的负极之中备受关注的材料,但由于其低导电性、体积膨胀、电极粉化等问题限制了其大规模应用。为解决以上问题,一方面可以通过尺寸效应将硅颗粒纳米化,当粒径小于150 nm时,可显著抑制材料在充放电过程中的粉化现象,同时缓解其体积膨胀效应;另一方面,通过高强度材料的限域作用,束缚硅的体积膨胀并提高导电性。化学气相沉积(CVD)法制备的硅碳复合材料综合了两者优点,通过多孔碳基体的丰富微孔结构实现硅颗粒的原位限域生长,同时得益于碳材料优异的导电性能和机械强度,使得CVD硅碳复合材料作为负极展现出卓越的比容量和循环稳定性。这种独特的结构设计和性能优势使其成为新一代硅碳负极材料领域备受关注的前沿制备技术。然而,当前针对CVD硅碳负极的系统性研究仍显不足,其研究体系尚未形成完整框架,特别是在沉积动力学机制(如碳基体结构对沉积动力学的调控作用、硅沉积的微观结构演变规律)与工程化应用之间的构效关系方面,相关关键机理尚未完全阐明。基于上述研究背景,本文系统梳理了CVD硅碳负极技术的研究体系,建立多维分析框架:①碳基体结构与硅源特性对沉积动力学的协同调控机制;②高能量密度电极的界面工程策略与结构优化方法;③规模化制备工艺的关键技术瓶颈。通过整合现有研究成果,构建了从基础研究到工程应用的知识体系,揭示现阶段产业化进程中的核心矛盾,并提出工艺优化路径,为新一代CVD硅碳负极的理性设计与可控制造提供科学指导。

关键词: 硅碳负极, 化学气相沉积, 锂离子电池, 多孔碳

Abstract:

Silicon has attracted considerable attention as one of the most promising anode materials for lithium-ion batteries due to its high theoretical specific capacity, elemental abundance, and environmental friendliness. However, its large-scale application is limited by low conductivity, significant volume expansion, and electrode pulverization. To address these challenges, silicon particles can be reduced to the nanoscale to leverage the size effect; when the particle size is below 150 nm, electrode pulverization during cycling is significantly mitigated, and volume expansion is alleviated. Additionally, volume changes can be constrained and conductivity enhanced by incorporating high-strength materials. The silicon-carbon composite prepared by chemical vapor deposition (CVD) integrates the advantages of both silicon and carbon, enabling in situ confined growth of silicon particles within the porous carbon matrix. Benefiting from the excellent conductivity and mechanical strength of the carbon framework, CVD-derived silicon-carbon composites exhibit outstanding specific capacity and cycling stability as anodes. This unique structural design and performance make them promising candidates for next-generation anode materials in advanced preparation technologies. However, systematic research on CVD silicon-carbon anodes remains insufficient, and a comprehensive framework has yet to be established. In particular, the structure-activity relationships involving deposition kinetics (such as the influence of carbon substrate structure on deposition behavior and the microstructural evolution of silicon) and engineering applications are not fully understood. Based on this context, this paper systematically reviews the research progress on CVD silicon-carbon anode technology and establishes a multi-dimensional analytical framework: ① the co-regulation mechanism of carbon substrate structure and silicon source characteristics on deposition kinetics; ② interface engineering strategies and structural optimization methods for high-energy-density electrodes; and ③ key technical bottlenecks in large-scale preparation. By integrating existing research findings, this review constructs a knowledge system bridging basic research and engineering applications, elucidates core challenges hindering industrialization, and proposes process optimization pathways, providing scientific guidance for the rational design and controlled fabrication of next-generation CVD silicon-carbon anodes.

Key words: silicon-carbon anode, chemical vapor deposition, lithium-ion batteries, porous carbon

中图分类号: