储能科学与技术 ›› 2024, Vol. 13 ›› Issue (7): 2107-2115.doi: 10.19799/j.cnki.2095-4239.2024.0378

• 低温电池专刊 •    下一篇

SnSb-Li4Ti5O12 复合负极材料低温高倍率储锂特性研究

马国政1(), 陈金伟1, 熊兴宇1, 杨振忠1, 周钢2, 胡仁宗1()   

  1. 1.广东省先进储能材料重点实验室,华南理工大学材料科学与工程学院,广东 广州 510640
    2.东莞理工学院生态环境与建筑工程学院,广东 东莞 523808
  • 收稿日期:2024-05-06 修回日期:2024-05-27 出版日期:2024-07-28 发布日期:2024-07-23
  • 通讯作者: 胡仁宗 E-mail:599871766@qq.com;msrenzonghu@scut.edu.cn
  • 作者简介:马国政(1999—),男,硕士研究生,研究方向为低温离子电池负极材料,E-mail:599871766@qq.com
  • 基金资助:
    广东省自然科学基金-卓越青年团队项目(2023B1515040011);国家自然科学基金重点项目(52231009)

High-rate lithium storage performance of SnSb-Li4Ti5O12 composite anode for Li-ion batteries at low-temperature

Guozheng MA1(), Jinwei CHEN1, Xingyu XIONG1, Zhenzhong YANG1, Gang ZHOU2, Rengzong HU1()   

  1. 1.School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510640, Guangdong, China
    2.Dongguan University of Technology, Dongguan 523808, Guangdong, China
  • Received:2024-05-06 Revised:2024-05-27 Online:2024-07-28 Published:2024-07-23
  • Contact: Rengzong HU E-mail:599871766@qq.com;msrenzonghu@scut.edu.cn

摘要:

低温环境下,锂离子电池的性能明显下降,严重限制了其在寒冷地区的应用推广。尤其是,商业化的石墨负极材料锂离子扩散较慢且嵌锂电位低,易出现析锂风险而使锂离子电池的低温充电能力差。相比之下,Sn基负极材料具有较高的储锂容量和适中的嵌锂电位,具有良好的低温应用前景。本文通过球磨方法,将SnSb与Li4Ti5O12(LTO)进行复合,制备出了系列SnSb-Li4Ti5O12复合负极材料。实验结果表明,当LTO含量为30%时,复合负极材料能兼顾高容量,同时具备良好的常、低温循环稳定性和高倍率储锂能力。在30 ℃下,以0.2 A/g循环300次后比容量为536 mAh/g,容量保持率接近90%;即使在20 A/g (34C)的高倍率下比容量仍有280 mAh/g。并且在-30 ℃下,以0.2 A/g循环100次后稳定容量为413 mAh/g,1.0 A/g倍率下能保持适中嵌锂电位,嵌锂容量也可达其常温容量的61%。研究结果表明,LTO复合后SnSb的物相结构能够在循环过程中保持完整,保证了其低温条件下高倍率脱锂过程的循环稳定性。这项工作展现了SnSb-Li4Ti5O12复合负极材料的低温应用潜力,为构建具有低温快速充电能力的锂离子电池提供材料基础。

关键词: 锂离子电池, 低温充电, 合金负极, 倍率性能

Abstract:

The performance of lithium-ion batteries (LIBs) is severely degraded at low temperatures, hindering further development and applications. The commercial graphite anode used in LIBs exhibits slow lithium-ion diffusion and a low lithiation potential, which can lead to lithium plating and consequently poor low-temperature charging capability. In contrast, tin-based anodes show high capacities and moderate lithiation potentials, thus resulting in superior low-temperature performance. This study presents a facile approach to prepare SnSb-Li4Ti5O12 composites through a simple ball-milling method. A fine balance between high capacity and cycling stability was achieved with a 30% LTO composite, which displays excellent high-rate lithium storage capability and cycling stability at room and low temperatures. Specifically, after 300 cycles at 30 ℃, the composite material delivers a specific capacity of 536 mAh/g, with a capacity retention rate close to 90%. Even at a high rate of 20 A/g (34C), the specific capacity remains at around 280 mAh/g, approximately 50% of that at 0.2 A/g. When cycling 100 times at -30 ℃ and a current density of 0.2 A/g, a reversible specific capacity of about 413 mAh/g was obtained (74% of room temperature capacity). Moreover, at -30 ℃ and a rate of 1.0 A/g, a moderate lithiation potential is maintained, and the capacity can reach 61% of the value at room temperature. The results suggest that the phase structure of SnSb remains intact during cycling, which ensures the cycling stability and high-rate capacity. This work demonstrates the possibility of low-temperature applications of SnSb-LTO composite anode materials and provides a basis for the development of fast charging LIBs at low-temperature.

Key words: lithium-ion battery, low-temperature, alloy anode, rate capability

中图分类号: