储能科学与技术 ›› 2025, Vol. 14 ›› Issue (4): 1564-1573.doi: 10.19799/j.cnki.2095-4239.2024.1068

• 储能测试与评价 • 上一篇    下一篇

GC-MS检测锂离子电池电解液分离条件的研究

岳金明(), 刘媛丽, 陈一霞, 禹习谦, 李泓()   

  1. 中国科学院物理研究所,北京 100190
  • 收稿日期:2024-11-14 修回日期:2024-11-23 出版日期:2025-04-28 发布日期:2025-05-20
  • 通讯作者: 李泓 E-mail:jmyue@iphy.ac.cn;hli@iphy.ac.cn
  • 作者简介:岳金明(1994—),女,博士,研究方向为锂离子失效分析,E-mail:jmyue@iphy.ac.cn
  • 基金资助:
    工信部新能源汽车动力电池全生命周期检测验证公共服务平台项目(2022-235-224)

Study on the separation conditions of lithium ion battery electrolyte by GC-MS detection

Jinming YUE(), Yuanli LIU, Yixia CHEN, Xiqian YU, Hong LI()   

  1. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2024-11-14 Revised:2024-11-23 Online:2025-04-28 Published:2025-05-20
  • Contact: Hong LI E-mail:jmyue@iphy.ac.cn;hli@iphy.ac.cn

摘要:

电解液是锂离子电池的关键组分之一,溶剂作为电解液的主体部分,不仅决定了锂离子的液相传输速率和溶剂化结构,还会影响固态电解质界面膜的组成和结构,溶剂检测在科学研究、公共检测及工业生产等领域中都会涉及。随着电解液的种类越来越多,成分相较于常规电解液变得更复杂,对电解液的检测方法也提出了更高要求。一般来说,电解液检测分析包括定性分析和定量分析,定性阶段确定的组分种类越多则越有助于开展后续分析。就溶剂检测而言,基于气相色谱-质谱联用技术,期望一次进样能尽可能多地检测出不同种类的溶剂及添加剂,且能同时满足酯类、醚类及苯环类等溶剂的分离需求。本工作介绍了一种电解液溶剂及添加剂组分的气相色谱-质谱检测方法,通过对进样口温度、升温速率、柱温、柱流量等参数进行优化,改变色谱柱对不同组分的吸附能力,利用不同组分在惰性气流中流动的速度差,最终同时实现了碳酸乙烯酯、碳酸丙烯酯、碳酸甲乙酯等15种酯类溶剂,及二乙二醇二甲醚、乙二醇二甲醚2种醚类溶剂,缩醛类溶剂1,3-二氧环戊烷,以及苯环类溶剂环己基苯等共计19种组分的有效分离,提供了一种全面、高效且对多种溶剂和添加剂具有普适性的电解液定性检测方法。

关键词: 锂离子电池, 电解液, 溶剂, 气相色谱-质谱, 检测

Abstract:

Electrolytes are a critical component of lithium ion batteries. Among their key constituents, solvents significantly influence the ion transport rate in the liquid phase, the solvation structure of lithium ions, and the composition and structure of the solid electrolyte interphase. Solvent detection plays a vital role in scientific research, public testing, and industrial production. However, as the range of electrolytes continues to expand, their increasingly complex compositions demand more advanced detection methods. Electrolyte detection analysis generally involves two stages: qualitative and quantitative analysis. Comprehensive identification of components during the qualitative stage provides a solid foundation for subsequent analysis. For solvent detection, gas chromatography-mass spectrometry technology is utilized to identify as many different types of solvents and additives as possible in a single injection. This technology also accommodates the separation requirements of diverse solvents such as esters, ethers, and benzene rings. This articles introduces a gas chromatography-mass spectrometry detection method for electrolyte solvents and additives. The method achieves effective separation by optimizing key parameters such as injection port temperature, heating rate, column temperature, and column flow rate. These adjustments could change the adsorption capacity of the chromatographic column for different components and utilize the velocity differences of each compound in an inert gas stream. Using this approach, the simultaneous and effective separation of 19 distinct components was achieved. These include15 ester solvents such as ethylene carbonate, propylene carbonate, and methyl ethyl carbonate; 2 ether solvents such as diethylene glycol dimethyl ether and ethylene glycol dimethyl ether; aldehyde solvent 1,3-dioxolane; and the benzene ring solvent cyclohexylbenzene. This comprehensive and efficient method offers a universal solution for the qualitative detection of electrolytes containing multiple solvents and additives.

Key words: lithium-ion battery, electrolyte, solvent, gas chromatography-mass spectrometry, detection

中图分类号: