储能科学与技术 ›› 2025, Vol. 14 ›› Issue (4): 1554-1563.doi: 10.19799/j.cnki.2095-4239.2024.0975

• 储能测试与评价 • 上一篇    下一篇

不同冷却工质对电池热失控抑制的效果

范文强1(), 史梓男2(), 杨代铭2, 梁惠施2, 陈烨3   

  1. 1.清华大学深圳国际研究生院,广东 深圳 518055
    2.清华四川能源互联网研究院,四川 成都 610213
    3.珠海沃顿智能信息技术有限公司,广东 珠海 519085
  • 收稿日期:2024-10-21 修回日期:2024-11-30 出版日期:2025-04-28 发布日期:2025-05-20
  • 通讯作者: 史梓男 E-mail:fwq22@mails.tsinghua.edu.cn;shizinan@tsinghua-eiri.org
  • 作者简介:范文强(1998—),男,硕士研究生,研究方向为电池安全预警,E-mail:fwq22@mails.tsinghua.edu.cn

Experimental study on the suppression effect of different coolants on battery thermal runaway

Wenqiang FAN1(), Zinan SHI2(), Daiming YANG2, Huishi LIANG2, Ye CHEN3   

  1. 1.Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
    2.Sichuan Energy Internet Research Institute, Tsinghua University, Chengdu 610213, Sichuan, China
    3.Zhuhai Walton Intelligent Information Technology Co. , Ltd. , Zhuhai 519085, Guangdong, China
  • Received:2024-10-21 Revised:2024-11-30 Online:2025-04-28 Published:2025-05-20
  • Contact: Zinan SHI E-mail:fwq22@mails.tsinghua.edu.cn;shizinan@tsinghua-eiri.org

摘要:

浸没式冷却在热管理技术中优势突出,具有极高的应用潜力和价值,而冷却工质的选择尤为关键。为研究不同冷却工质的实际表现及其对电池热失控抑制效果的差异,本工作分别进行了导热油(L-QD350)、10号变压器油、植物油(DS3天然酯)、硅油(50 cSt)、乙二醇原液(99.9%,涤纶级)和电子氟化液(Novec-7200)浸没下的86 Ah磷酸铁锂电芯的热失控实验,从实验现象、电压和温度曲线、各环节的时域和热学评估指标等方面对比了这6种冷却工质在热失控过程中的表现,并对植物油浸没量对热失控抑制效果的影响进行了研究。实验结果表明,各冷却工质浸没下的电芯在热失控过程中均会产生大量白烟,植物油浸没下白烟持续一段时间后不再产生,而导热油和电子氟化液在热失控过程中会发生自燃;植物油和乙二醇原液在各时域和热学评估指标下表现出色,硅油对应的时域评估指标较差,电子氟化液在热学评估指标中表现较差。总之,植物油和乙二醇原液在冷却效果和热失控抑制方面的表现优于其他冷却工质,而硅油和电子氟化液的表现相对较差。植物油浸没量对热失控影响显著,浸没量越大,热失控发展越缓慢,电池表面最高温度越低,热失控剧烈程度越小,但应结合应用场景、成本及冷却工质具体参数确定冷却工质用量。本研究成果可为电池热管理系统提供有效数据支撑,并为浸没式液体冷却系统中冷却工质的选择提供参考。

关键词: 热失控, 冷却工质, 热管理, 泄压阀, 浸没式冷却

Abstract:

The choice of coolants is particularly crucial, and immersion cooling systems offer outstanding advantages in thermal management technology, with high potential and application value. To investigate the actual performance of different coolants and their effectiveness in suppressing battery thermal runaway, this study conducted thermal runaway experiments on 86 Ah lithium iron phosphate cells immersed in six coolants: thermal oil (L-QD350), 10# transformer oil, vegetable oil (DS3 natural ester), silicone oil (50 cSt), ethylene glycol stock solution (99.9%, polyester grade), and electronic fluoride liquid (Novec-7200). The performance of these coolants was compared based on experimental phenomena, voltage and temperature curves, time-domain and thermal evaluation indicators of each link, and the influence of vegetable oil immersion level on thermal runaway suppression. The experimental results demonstrate that all coolants produced significant white smoke during the thermal runaway process. However, white smoke ceased after prolonged immersion in vegetable oil, whereas thermal oil and electronic fluoride liquid exhibited spontaneous ignition during thermal runaway. Vegetable oil and ethylene glycol stock solutions performed well in various time-domain and thermal evaluation indicators, whereas silicone oil performed poorly in time-domain indicators, and electronic fluoride liquid performed poorly in thermal indicators. In summary, vegetable oil and ethylene glycol stock solutions outperformed the other coolants in terms of cooling efficiency and thermal runaway suppression, whereas silicone oil and electronic fluoride liquid exhibited relatively weaker performance. In addition, the amount of vegetable oil added has a significant impact on thermal runaway. The higher the immersion amount, the slower the development of thermal runaway, and the lower the temperature on the battery surface, the less severe the thermal runaway. However, the optimal amount of coolants should be determined based on the application conditions, cost, and specific coolant parameters. These findings provide effective data support for battery thermal management systems and provide a reference for selecting coolants for immersion cooling systems.

Key words: thermal runaway, coolants, thermal management, pressure relief valve, immersion cooling

中图分类号: