1 |
FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267. DOI: 10.1016/j.ensm.2017.05.013.
|
2 |
KONG D P, LV H P, PING P, et al. A review of early warning methods of thermal runaway of lithium ion batteries[J]. Journal of Energy Storage, 2023, 64: 107073. DOI: 10.1016/j.est.2023.107073.
|
3 |
WU W X, WANG S F, WU W, et al. A critical review of battery thermal performance and liquid based battery thermal management[J]. Energy Conversion and Management, 2019, 182: 262-281. DOI: 10.1016/j.enconman.2018.12.051.
|
4 |
WU T T, WANG C H, HU Y X, et al. Research on electrochemical characteristics and heat generating properties of power battery based on multi-time scales[J]. Energy, 2023, 265: 126416. DOI: 10.1016/j.energy.2022.126416.
|
5 |
黎华玲, 唐贤文, 邵丹, 等. 锂离子电池热失控气体研究进展[J]. 电池, 2023, 53(1): 98-102. DOI: 10.19535/j.1001-1579.2023.01.022.
|
|
LI H L, TANG X W, SHAO D, et al. Research progress in thermal runaway gas of Li-ion battery[J]. Battery Bimonthly, 2023, 53(1): 98-102. DOI: 10.19535/j.1001-1579.2023.01.022.
|
6 |
李嘉鑫, 李鹏钊, 王苗, 等. 锂离子电池热管理技术研究进展[J]. 过程工程学报, 2023, 23(8): 1102-1117.
|
|
LI J X, LI P Z, WANG M, et al. Research progress of thermal management technology for lithium-ion batteries[J]. The Chinese Journal of Process Engineering, 2023, 23(8): 1102-1117.
|
7 |
ROE C, FENG X N, WHITE G, et al. Immersion cooling for lithium-ion batteries-A review[J]. Journal of Power Sources, 2022, 525: 231094. DOI: 10.1016/j.jpowsour.2022.231094.
|
8 |
WANG Z C, DU C Q. A comprehensive review on thermal management systems for power lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110685. DOI: 10.1016/j.rser.2020.110685.
|
9 |
YANG W, ZHOU F, ZHOU H B, et al. Thermal performance of cylindrical lithium-ion battery thermal management system integrated with mini-channel liquid cooling and air cooling[J]. Applied Thermal Engineering, 2020, 175: 115331. DOI: 10.1016/j.applthermaleng.2020.115331.
|
10 |
ZHAO G, WANG X L, NEGNEVITSKY M, et al. An up-to-date review on the design improvement and optimization of the liquid-cooling battery thermal management system for electric vehicles[J]. Applied Thermal Engineering, 2023, 219: 119626. DOI: 10.1016/j.applthermaleng.2022.119626.
|
11 |
曾少鸿, 吴伟雄, 刘吉臻, 等. 锂离子电池浸没式冷却技术研究综述[J]. 储能科学与技术, 2023, 12(9): 2888-2903. DOI: 10.19799/j.cnki.2095-4239.2023.0269.
|
|
ZENG S H, WU W X, LIU J Z, et al. A review of research on immersion cooling technology for lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(9): 2888-2903. DOI: 10.19799/j.cnki.2095-4239.2023.0269.
|
12 |
钟恺为, 王长宏, 吕琪铭, 等. 锂离子电池浸没式冷却的研究进展[J]. 电池, 2024, 54(2): 265-270. DOI: 10.19535/j.1001-1579.2024.02.026.
|
|
ZHONG K W, WANG C H, LYU Q M, et al. Research progress in immersion cooling for Li-ion battery[J]. Battery Bimonthly, 2024, 54(2): 265-270. DOI: 10.19535/j.1001-1579.2024.02.026.
|
13 |
SATYANARAYANA G, RUBEN SUDHAKAR D, MUTHYA GOUD V, et al. Experimental investigation and comparative analysis of immersion cooling of lithium-ion batteries using mineral and therminol oil[J]. Applied Thermal Engineering, 2023, 225: 120187. DOI: 10.1016/j.applthermaleng.2023.120187.
|
14 |
WU S Q, LAO L, WU L, et al. Effect analysis on integration efficiency and safety performance of a battery thermal management system based on direct contact liquid cooling[J]. Applied Thermal Engineering, 2022, 201: 117788. DOI: 10.1016/j.applthermaleng.2021.117788.
|
15 |
BARCA F, CAPOROSSI T, RIZZO S. Silicone oil: Different physical proprieties and clinical applications[J]. BioMed Research International, 2014(1): 502143. DOI: 10.1155/2014/502143.
|
16 |
AZIZ T, FAN H, KHAN F U, et al. Modified silicone oil types, mechanical properties and applications[J]. Polymer Bulletin, 2019, 76(4): 2129-2145. DOI: 10.1007/s00289-018-2471-2.
|
17 |
ROZGA P, BEROUAL A, PRZYBYLEK P, et al. A review on synthetic ester liquids for transformer applications[J]. Energies, 2020, 13(23): 6429. DOI: 10.3390/en13236429.
|
18 |
EL-GENK M S, BOSTANCI H. Saturation boiling of HFE-7100 from a copper surface, simulating a microelectronic chip[J]. International Journal of Heat and Mass Transfer, 2003, 46(10): 1841-1854. DOI: 10.1016/S0017-9310(02)00489-1.
|
19 |
TUMA P E. The merits of open bath immersion cooling of datacom equipment[C]//2010 26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM). February 21-25, 2010, Santa Clara, CA, USA. IEEE, 2010: 123-131. DOI: 10.1109/STHERM.2010.5444305.
|
20 |
LIU F, HU Q W, JIANG C Y, et al. The suppression performance of fluorinated cooling agents on the lithium-ion batteries fire based on the Accelerating Rate Calorimeter (ARC)[J]. Thermal Science and Engineering Progress, 2023, 42: 101877. DOI: 10.1016/j.tsep.2023.101877.
|
21 |
李雨泽. 浸没方式下液体抑制锂电池热失控技术研究[D]. 广汉: 中国民用航空飞行学院, 2022. DOI: 10.27722/d.cnki.gzgmh.2022. 000212.
|
|
LI Y Z. Research on liquid restraining thermal runaway of lithium battery under immersion mode[D]. Guanghan: Civil Aviation Flight University of China, 2022. DOI: 10.27722/d.cnki.gzgmh. 2022.000212.
|
22 |
BAI P X, XU R C, LIU M Y, et al. Thermal runaway characteristics of LFP batteries by immersion cooling[J]. ACS Applied Energy Materials, 2023, 6(13): 7205-7211. DOI: 10.1021/acsaem.3c00904.
|