Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (2): 487-502.doi: 10.19799/j.cnki.2095-4239.2021.0409
• Energy Storage Materials and Devices • Previous Articles Next Articles
Lan SONG(), Ruoyu XIONG, Huaxiong SONG, Penghui TAN, Yun ZHANG(), Huamin ZHOU
Received:
2021-08-09
Revised:
2021-09-12
Online:
2022-02-05
Published:
2022-02-08
Contact:
Yun ZHANG
E-mail:slan_song@foxmail.com;marblezy@hust.edu.cn
CLC Number:
Lan SONG, Ruoyu XIONG, Huaxiong SONG, Penghui TAN, Yun ZHANG, Huamin ZHOU. Multiscale nonuniformity of lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(2): 487-502.
1 | 巫湘坤, 詹秋设, 张兰, 等. 锂电池极片微结构优化及可控制备技术进展[J]. 应用化学, 2018, 35(9): 1076-1092. |
WU X K, ZHAN Q S, ZHANG L, et al. Progress on microstructural optimization and controllable preparation technology for lithium ion battery electrodes[J]. Chinese Journal of Applied Chemistry, 2018, 35(9): 1076-1092. | |
2 | 胡轲. 大容量储能系统电池管理系统均衡技术研究[J]. 南方能源建设, 2018, 5(1): 40-44. |
HU K. Research on balancing technology of battery management system of high-capacity energy storage system[J]. Southern Energy Construction, 2018, 5(1): 40-44. | |
3 | VOGEL J E,FOROUZAN M M,HARDY E E,et al. Electrode microstructure controls localized electronic impedance in Li-ion batteries[J]. Electrochimica Acta, 2019, 297: 820-825. |
4 | CHUNG D W, SHEARING P R, BRANDON N P, et al. Particle size polydispersity in Li-ion batteries[J]. Journal of the Electrochemical Society, 2014, 161(3): A422-A430. |
5 | 安富强, 张剑波, 黄俊, 等. 电动汽车用锂离子电池制备及其一致性演变分析[J]. 材料热处理学报, 2015, 36(4): 239-248. |
AN F Q, ZHANG J B, HUANG J, et al. Production of lithium-ion battery and uniformity evolution analysis[J]. Transactions of Materials and Heat Treatment, 2015, 36(4): 239-248. | |
6 | KURATANI K, ISHIBASHI K, KOMODA Y, et al. Controlling of dispersion state of particles in slurry and electrochemical properties of electrodes[J]. Journal of the Electrochemical Society, 2019, 166(4): A501-A506. |
7 | HENDRICKS C, WILLIARD N, MATHEW S, et al. A failure modes, mechanisms, and effects analysis (FMMEA) of lithium-ion batteries[J]. Journal of Power Sources, 2015, 297: 113-120. |
8 | BIRKL C R, ROBERTS M R, MCTURK E, et al. Degradation diagnostics for lithium ion cells[J]. Journal of Power Sources, 2017, 341: 373-386. |
9 | REN D S, FENG X N, LU L G, et al. Overcharge behaviors and failure mechanism of lithium-ion batteries under different test conditions[J]. Applied Energy, 2019, 250: 323-332. |
10 | KWADE A, HASELRIEDER W, LEITHOFF R, et al. Current status and challenges for automotive battery production technologies[J]. Nature Energy, 2018, 3(4): 290-300. |
11 | ABBOUD A W, DUFEK E J, LIAW B. Communication—Implications of local current density variations on lithium plating affected by cathode particle size[J]. Journal of the Electrochemical Society, 2019, 166(4): A667-A669. |
12 | OUYANG M G, FENG X N, HAN X B, et al. A dynamic capacity degradation model and its applications considering varying load for a large format Li-ion battery[J]. Applied Energy, 2016, 165: 48-59. |
13 | OMAR N, MONEM M A, FIROUZ Y, et al. Lithium iron phosphate based battery—Assessment of the aging parameters and development of cycle life model[J]. Applied Energy, 2014, 113: 1575-1585. |
14 | ANSEÁN D, DUBARRY M, DEVIE A, et al. Fast charging technique for high power LiFePO4 batteries: A mechanistic analysis of aging[J]. Journal of Power Sources, 2016, 321: 201-209. |
15 | WU M S, LIN C Y, WANG Y Y, et al. Numerical simulation for the discharge behaviors of batteries in series and/or parallel-connected battery pack[J]. Electrochimica Acta, 2006, 52(3): 1349-1357. |
16 | MIYATAKE S, SUSUKI Y, HIKIHARA T, et al. Discharge characteristics of multicell lithium-ion battery with nonuniform cells[J]. Journal of Power Sources, 2013, 241: 736-743. |
17 | BRUEN T, MARCO J. Modelling and experimental evaluation of parallel connected lithium ion cells for an electric vehicle battery system[J]. Journal of Power Sources, 2016, 310: 91-101. |
18 | FOROUZAN M M, MAZZEO B A, WHEELER D R. Modeling the effects of electrode microstructural heterogeneities on Li-ion battery performance and lifetime[J]. Journal of the Electrochemical Society, 2018, 165(10): A2127-A2144. |
19 | FENG F, HU X S, HU L, et al. Propagation mechanisms and diagnosis of parameter inconsistency within Li-Ion battery packs[J]. Renewable and Sustainable Energy Reviews, 2019, 112: 102-113. |
20 | YANG C F, WANG X Y, FANG Q H, et al. An online SOC and capacity estimation method for aged lithium-ion battery pack considering cell inconsistency[J]. Journal of Energy Storage, 2020, 29: doi: 10.1016/j.est.2020.101250. |
21 | LYU J, SONG W J, LIN S L, et al. Influence of equalization on LiFePO4 battery inconsistency[J]. International Journal of Energy Research, 2017, 41(8): 1171-1181. |
22 | 王莉, 谢乐琼, 张干, 等. 锂离子电池一致性筛选研究进展[J]. 储能科学与技术, 2018, 7(2): 194-202. |
WANG L, XIE L Q, ZHANG G, et al. Research progress in the consistency screening of Li-ion batteries[J]. Energy Storage Science and Technology, 2018, 7(2): 194-202. | |
23 | LAI X, JIANG C, ZHENG Y J, et al. A novel composite equalizer based on an additional cell for series-connected lithium-ion cells[J]. Electronics, 2018, 7(12): 366. |
24 | NANDA J, REMILLARD J, O'NEILL A, et al. Local state-of-charge mapping of lithium-ion battery electrodes[J]. Advanced Functional Materials, 2011, 21(17): 3282-3290. |
25 | MASTALI M M, FARHAD S, FARKHONDEH M, et al. Simplified electrochemical multi-particle model for LiFePO4 cathodes in lithium-ion batteries[J]. Journal of Power Sources, 2015, 275: 633-643. |
26 | AGUBRA V, FERGUS J. Lithium ion battery anode aging mechanisms[J]. Materials (Basel, Switzerland), 2013, 6(4): 1310-1325. |
27 | RÖDER F, SONNTAG S, SCHRÖDER D, et al. Simulating the impact of particle size distribution on the performance of graphite electrodes in lithium-ion batteries[J]. Energy Technology, 2016, 4(12): 1588-1597. |
28 | LEI J L, MCLARNON F, KOSTECKI R. In situ Raman microscopy of individual LiNi0.8Co0.15Al0.05O2 particles in a Li-ion battery composite cathode[J]. The Journal of Physical Chemistry B, 2005, 109(2): 952-957. |
29 | TSAI P C, WEN B H, WOLFMAN M, et al. Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries[J]. Energy & Environmental Science, 2018, 11(4): 860-871. |
30 | LEE H, JO E, CHUNG K Y, et al. In-depth TEM investigation on structural inhomogeneity within a primary LixNi0.835Co0.15Al0.015O2 particle: Origin of capacity decay during high-rate discharge[J]. Angewandte Chemie International Edition, 2020, 59(6): 2385-2391. |
31 | YAN B, LIM C, YIN L L, et al. Three dimensional simulation of galvanostatic discharge of LiCoO2Cathode based on X-ray nano-CT images[J]. Journal of the Electrochemical Society, 2012, 159(10): A1604-A1614. |
32 | TIAN C X, XU Y H, NORDLUND D, et al. Charge heterogeneity and surface chemistry in polycrystalline cathode materials[J]. Joule, 2018, 2(3): 464-477. |
33 | ZHENG H H, YANG R Z, LIU G, et al. Cooperation between active material, polymeric binder and conductive carbon additive in lithium ion battery cathode[J]. The Journal of Physical Chemistry C, 2012, 116(7): 4875-4882. |
34 | COOPER S J, EASTWOOD D S, GELB J, et al. Image based modelling of microstructural heterogeneity in LiFePO4 electrodes for Li-ion batteries[J]. Journal of Power Sources, 2014, 247: 1033-1039. |
35 | SHEARING P R, HOWARD L E, JØRGENSEN P S, et al. Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery[J]. Electrochemistry Communications, 2010, 12(3): 374-377. |
36 | MÜLLER S, ELLER J, EBNER M, et al. Quantifying inhomogeneity of lithium ion battery electrodes and its influence on electrochemical performance[J]. Journal of the Electrochemical Society, 2018, 165(2): A339-A344. |
37 | KENNEY B, DARCOVICH K, MACNEIL D D, et al. Modelling the impact of variations in electrode manufacturing on lithium-ion battery modules[J]. Journal of Power Sources, 2012, 213: 391-401. |
38 | MÜLLER M, PFAFFMANN L, JAISER S, et al. Investigation of binder distribution in graphite anodes for lithium-ion batteries[J]. Journal of Power Sources, 2017, 340: 1-5. |
39 | KEHRWALD D, SHEARING P R, BRANDON N P, et al. Local tortuosity inhomogeneities in a lithium battery composite electrode[J]. Journal of the Electrochemical Society, 2011, 158(12): A1393. |
40 | MAIRE P, EVANS A, KAISER H, et al. Colorimetric determination of lithium content in electrodes of lithium-ion batteries[J]. Journal of the Electrochemical Society, 2008, 155(11): A862. |
41 | LIU J, KUNZ M, CHEN K, et al. Visualization of charge distribution in a lithium battery electrode[J]. The Journal of Physical Chemistry Letters, 2010, 1(14): 2120-2123. |
42 | NG S H, MANTIA F, NOVÁK P. A multiple working electrode for electrochemical cells: A tool for current density distribution studies[J]. Angewandte Chemie International Edition, 2009, 48(3): 528-532. |
43 | ZHANG G S, SHAFFER C E, WANG C Y, et al. In-situ measurement of current distribution in a Li-ion cell[J]. Journal of the Electrochemical Society, 2013, 160(4): A610-A615. |
44 | LEE C Y, LEE S J, TANG M S, et al. In situ monitoring of temperature inside lithium-ion batteries by flexible micro temperature sensors[J]. Sensors (Basel, Switzerland), 2011, 11(10): 9942-9950. |
45 | FORGEZ C, VINH D D, FRIEDRICH G, et al. Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery[J]. Journal of Power Sources, 2010, 195(9): 2961-2968. |
46 | 罗雨, 王耀玲, 李丽华, 等. 锂电池制片工艺对电池一致性的影响[J]. 电源技术, 2013, 37(10): 1757-1759. |
LUO Y, WANG Y L, LI L H, et al. Influence of preparation techniques upon uniformity of lithium-ion batteries[J]. Chinese Journal of Power Sources, 2013, 37(10): 1757-1759. | |
47 | ETIEMBLE A, BESNARD N, BONNIN A, et al. Multiscale morphological characterization of process induced heterogeneities in blended positive electrodes for lithium-ion batteries[J]. Journal of Materials Science, 2017, 52(7): 3576-3596. |
48 | 宋华雄, 张云, 宋岚, 等. 激光在线测厚振动分析与精度优化[J]. 半导体光电, 2021, 42(1): 110-115. |
SONG H X, ZHANG Y, SONG L, et al. Vibration analysis and precision optimization of laser online thickness measurement[J]. Semiconductor Optoelectronics, 2021, 42(1): 110-115. | |
49 | WANG L M, CHENG Y, ZHAO X L. Influence of connecting plate resistance upon LiFePO4 battery performance[J]. Applied Energy, 2015, 147: 353-360. |
50 | CAI L, AN K, FENG Z L, et al. In-situ observation of inhomogeneous degradation in large format Li-ion cells by neutron diffraction[J]. Journal of Power Sources, 2013, 236: 163-168. |
51 | DUBARRY M, VUILLAUME N, LIAW B Y. Origins and accommodation of cell variations in Li-ion battery pack modeling[J]. International Journal of Energy Research, 2010, 34(2): 216-231. |
52 | 李波, 张永生, 唐小晴. 电池组一致性影响因素分析[J]. 电池, 2019, 49(4): 312-315. |
LI B, ZHANG Y S, TANG X Q. Analysis of factors affecting for battery pack consistency[J]. Battery Bimonthly, 2019, 49(4): 312-315. | |
53 | JIANG J C, ZHANG Y R, SHI W, et al. An analysis of optimized series and parallel method for traction lithium-ion batteries[C]//2014 International Conference on Intelligent Green Building and Smart Grid (IGBSG). April 23-25, 2014, Taipei, Taiwan, China. IEEE, 2014: 1-7. |
54 | 黄俊, 安富强, 王浩然, 等. 电动汽车用锂离子电池的一致性及分选方法[C]//第一届全国储能科学与技术大会摘要集. 上海, 2014: 214-216. |
55 | 杨帆. 锂离子电池组不一致性及其弥补措施[J]. 汽车电器, 2014(5): 37-40. |
YANG F. Inconformity of Li battery pack and remedial measures[J]. Auto Electric Parts, 2014(5): 37-40. | |
56 | KANG Y Z, DUAN B, ZHOU Z K, et al. A multi-fault diagnostic method based on an interleaved voltage measurement topology for series connected battery packs[J]. Journal of Power Sources, 2019, 417: 132-144. |
57 | GANESAN N, BASU S M, HARIHARAN K S, et al. Physics based modeling of a series parallel battery pack for asymmetry analysis, predictive control and life extension[J]. Journal of Power Sources, 2016, 322: 57-67. |
58 | HOFMANN M H, CZYRKA K, BRAND M J, et al. Dynamics of current distribution within battery cells connected in parallel[J]. Journal of Energy Storage, 2018, 20: 120-133. |
59 | BRAND M J, HOFMANN M H, STEINHARDT M, et al. Current distribution within parallel-connected battery cells[J]. Journal of Power Sources, 2016, 334: 202-212. |
60 | FLECKENSTEIN M, BOHLEN O, ROSCHER M A, et al. Current density and state of charge inhomogeneities in Li-ion battery cells with LiFePO4 as cathode material due to temperature gradients[J]. Journal of Power Sources, 2011, 196(10): 4769-4778. |
61 | YANG N X, ZHANG X W, SHANG B B, et al. Unbalanced discharging and aging due to temperature differences among the cells in a lithium-ion battery pack with parallel combination[J]. Journal of Power Sources, 2016, 306: 733-741. |
62 | FILL A, KOCH S, POTT A, et al. Current distribution of parallel-connected cells in dependence of cell resistance, capacity and number of parallel cells[J]. Journal of Power Sources, 2018, 407: 147-152. |
63 | DARLING R, NEWMAN J. Modeling a porous intercalation electrode with two characteristic particle sizes[J]. Journal of the Electrochemical Society, 1997, 144(12): 4201-4208. |
64 | SHI W, HU X S, JIN C, et al. Effects of imbalanced currents on large-format LiFePO4/graphite batteries systems connected in parallel[J]. Journal of Power Sources, 2016, 313: 198-204. |
65 | 施宝昌, 沈爱弟. 并联锂离子电池组的模型化与电流分配[J]. 计算机测量与控制, 2017, 25(10): 189-193. |
SHI B C, SHEN A D. Modelling and current distribution of parallel-connected lithium cells[J]. Computer Measurement & Control, 2017, 25(10): 189-193. | |
66 | GOGOANA R, PINSON M B, BAZANT M Z, et al. Internal resistance matching for parallel-connected lithium-ion cells and impacts on battery pack cycle life[J]. Journal of Power Sources, 2014, 252: 8-13. |
67 | LI Y G, LAN B R, LUO J H. Modeling and simulation evaluation of current and temperature inconsistency in parallel connected lithium-ion batteries[C]//2018 International Conference on Information Systems and Computer Aided Education (ICISCAE). July 6-8, 2018, Changchun, China. IEEE, 2018: 12-18. |
68 | HARRIS S J, LU P. Effects of inhomogeneities—Nanoscale to mesoscale—On the durability of Li-ion batteries[J]. The Journal of Physical Chemistry C, 2013, 117(13): 6481-6492. |
69 | NAGARAJAN G S, VAN ZEE J W, SPOTNITZ R M. A mathematical model for intercalation electrode behavior: I. Effect of particle-size distribution on discharge capacity[J]. Journal of the Electrochemical Society, 1998, 145(3): 771-779. |
70 | DAVID L, MOHANTY D, GENG L X, et al. High-voltage performance of Ni-rich NCA cathodes: Linking operating voltage with cathode degradation[J]. ChemElectroChem, 2019, 6(22): 5571-5580. |
71 | CHENG X P, ZHENG J M, LU J X, et al. Realizing superior cycling stability of Ni-rich layered cathode by combination of grain boundary engineering and surface coating[J]. Nano Energy, 2019, 62: 30-37. |
72 | PARK J, ZHAO H B, KANG S D, et al. Fictitious phase separation in Li layered oxides driven by electro-autocatalysis[J]. Nature Materials, 2021, 20(7): 991-999. |
73 | LIU Z X, BATTAGLIA V, MUKHERJEE P P. Mesoscale elucidation of the influence of mixing sequence in electrode processing[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2014, 30(50): 15102-15113. |
74 | FONT F, PROTAS B, RICHARDSON G, et al. Binder migration during drying of lithium-ion battery electrodes: Modelling and comparison to experiment[J]. Journal of Power Sources, 2018, 393: 177-185. |
75 | BOCKHOLT H, INDRIKOVA M, NETZ A, et al. The interaction of consecutive process steps in the manufacturing of lithium-ion battery electrodes with regard to structural and electrochemical properties[J]. Journal of Power Sources, 2016, 325: 140-151. |
76 | XIONG R Y, ZHANG Y, WANG Y M, et al. Scalable manufacture of high-performance battery electrodes enabled by a template-free method[J]. Small Methods, 2021, 5(6): doi: 10.1002/smtd.202100280. |
77 | 张双虎. 锂离子电池的电解液浸润的研究进展[J]. 化学世界, 2021, 62(3): 129-136. |
ZHANG S H. Progress in electrolyte wetting for lithium ion battery[J]. Chemical World, 2021, 62(3): 129-136. | |
78 | LI G X. Regulating mass transport behavior for high-performance lithium metal batteries and fast-charging lithium-ion batteries[J]. Advanced Energy Materials, 2021, 11(7): doi:10.1002/aenm.202002891. |
79 | HU Y S, LU Y X. The mystery of electrolyte concentration: From superhigh to ultralow[J]. ACS Energy Letters, 2020, 5(11): 3633-3636. |
80 | BAI X W, TAN J, WANG X L, et al. Study on distributed lithium-ion power battery grouping scheme for efficiency and consistency improvement[J]. Journal of Cleaner Production, 2019, 233: 429-445. |
81 | LIU C B, TAN J, SHI H Y, et al. Lithium-ion cell screening with convolutional neural networks based on two-step time-series clustering and hybrid resampling for imbalanced data[J]. IEEE Access, 2018, 6: 59001-59014. |
82 | 董缇, 彭鹏, 曹文炅, 等. 锂离子电池热管理和安全性研究[J]. 新能源进展, 2019, 7(1): 50-59. |
DONG T, PENG P, CAO W J, et al. Research on thermal management and safety of Li-ion batteries[J]. Advances in New and Renewable Energy, 2019, 7(1): 50-59. | |
83 | GÜMÜŞSU E, EKICI Ö, KÖKSAL M. 3-D CFD modeling and experimental testing of thermal behavior of a Li-Ion battery[J]. Applied Thermal Engineering, 2017, 120: 484-495. |
84 | SUN J L, LIU W, TANG C Y, et al. A novel active equalization method for series-connected battery packs based on clustering analysis with genetic algorithm[J]. IEEE Transactions on Power Electronics, 2021, 36(7): 7853-7865. |
[1] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[2] | Qingwei ZHU, Xiaoli YU, Qichao WU, Yidan XU, Fenfang CHEN, Rui HUANG. Semi-empirical degradation model of lithium-ion battery with high energy density [J]. Energy Storage Science and Technology, 2022, 11(7): 2324-2331. |
[3] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[4] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[5] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[6] | WANG Can, MA Pan, ZHU Guoliang, WEI Shuimiao, YANG Zhilu, ZHANG Zhiyu. Effect of lithium acrylic-coated nature graphite on its electrochemical properties [J]. Energy Storage Science and Technology, 2022, 11(6): 1706-1714. |
[7] | LIU Hangxin, CHEN Xiantao, SUN Qiang, ZHAO Chenxi. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment [J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. |
[8] | WANG Yuzuo, DENG Miao, WANG Jin, YANG Bin, LU Yinli, JIN Ge, RUAN Dianbo. Study on the effects of carbonization temperature on lithium-storage kinetics for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(6): 1715-1724. |
[9] | YU Chunhui, HE Ziying, ZHANG Chenxi, LIN Xianqing, XIAO Zhexi, WEI Fei. The analyses and suppressing strategies of silicon anode with the electrolyte [J]. Energy Storage Science and Technology, 2022, 11(6): 1749-1759. |
[10] | Zhenkai HU, Bo LEI, Yongqi LI, Youjie SHI, Qikai LEI, Zhipeng HE. Comparative study on safety test and evaluation methods of lithium-ion batteries for energy storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1650-1656. |
[11] | Guangyu CHENG, Xinwei LIU, Yueni MEI, Honghui GU, Cheng YANG, Ke WANG. Capacity fading analysis of lithium-ion battery after high temperature storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1339-1349. |
[12] | Yanwen DAI, Aiqing YU. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation [J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649. |
[13] | Chunjing LIN, Danhua LI, Haoran WEN, Tianyi MA, Hong CHANG, Peixiang CHANG, Haiqiang LI, Shiqiang LIU. Research on swelling force characteristics of power battery during charging [J]. Energy Storage Science and Technology, 2022, 11(5): 1627-1633. |
[14] | Qiaomin KE, Jian GUO, Yiwei WANG, Wenjiong CAO, Man CHEN, Fangming JIANG. The effect of liquid-cooled thermal management on thermal runaway of power battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1634-1640. |
[15] | Jun WANG, Lin RUAN, Yanliang QIU. Research progress on rapid heating methods for lithium-ion battery in low-temperature [J]. Energy Storage Science and Technology, 2022, 11(5): 1563-1574. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||