Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (3): 951-959.doi: 10.19799/j.cnki.2095-4239.2022.0681
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Xiaoxue PU1(), Shaobo YANG2(), Aixue TUO1, Lisha MOU1, Qi NA3
Received:
2022-11-17
Revised:
2022-12-13
Online:
2023-03-05
Published:
2022-12-19
Contact:
Shaobo YANG
E-mail:524398842@qq.com;yangsb1@changan.com.cn
CLC Number:
Xiaoxue PU, Shaobo YANG, Aixue TUO, Lisha MOU, Qi NA. Simulation analysis on sensitivity of discharge capacity on design parameters of a battery[J]. Energy Storage Science and Technology, 2023, 12(3): 951-959.
Table 1
Geometric and electrochemical parameters of the battery"
项目 | 细分参数 | 单位 | 负极 | 隔膜 | 正极 |
---|---|---|---|---|---|
模型参数 | 电极厚度 | μm | 65 | 16 | 52 |
活性材料体积分数 | — | 0.68 | — | 0.70 | |
电解液体积分数 | — | 0.275 | 0.45 | 0.215 | |
基体电导率 | S/m | 100 | — | 4 | |
颗粒半径 | μm | 16 | — | 5 | |
最大固相浓度 | mol/m3 | 30997 | — | 48766 | |
初始嵌锂态 | — | 0.867 | — | 0.21 | |
初始固相浓度 | mol/m3 | 26874 | — | 10240 | |
电化学参数 | 初始液相浓度 | mol/m3 | — | 1000 | — |
电荷转移系数[ | — | 0.5 | — | 0.5 | |
Bruggeman系数[ | — | 1.5 | 1.5 | 1.5 | |
Li+迁移数[ | — | — | 0.363 | — |
1 | 周嫣. 三元锂电池在新能源汽车上的设计与应用[J]. 北京工业职业技术学院学报, 2020, 19(4): 4-9. |
ZHOU Y. Design and application of ternary lithium battery in new energy vehicles[J]. Journal of Beijing Polytechnic College, 2020, 19(4): 4-9. | |
2 | 呼升. 三元锂电池在新能源汽车上的设计与应用[J]. 时代汽车, 2022(14): 122-124. |
HU S. Design and application of ternary lithium battery in new energy vehicles[J]. Auto Time, 2022(14): 122-124. | |
3 | THACKERAY M M, VAUGHEY J T, FRANSSON L L. Recent developments in anode materials for lithium batteries[J]. JOM, 2002, 54(3): 20-23. |
4 | 宋建龙, 王磊, 王莉. 锂电池倍率放电性能影响因素的研究[J]. 信息记录材料, 2020, 21(5): 3-6. |
SONG J L, WANG L, WANG L. Research on the influencing factors of rate discharge performance of lithium battery[J]. Information Recording Materials, 2020, 21(5): 3-6. | |
5 | 朴金丹, 罗新耀, 李秀琴. 锂离子电池高倍率放电性能的影响因素[J]. 华南师范大学学报(自然科学版), 2009, 41(S1): 250-251. |
PIAO J D, LUO X Y, LI X Q. The influence factors of high rate discharge performance of li-ion battery[J]. Journal of South China Normal University (Natural Science Edition), 2009, 41(S1): 250-251. | |
6 | 唐致远, 谭才渊, 陈玉红, 等. 锂离子电池高倍率放电性能研究[J]. 电源技术, 2006, 30(5): 383-387. |
TANG Z Y, TAN C Y, CHEN Y H, et al. Research on high rate discharge for lithium ion battery[J]. Chinese Journal of Power Sources, 2006, 30(5): 383-387. | |
7 | CHENG K L, MU D B, WU B R, et al. Electrochemical performance of a nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion batteries under different cut-off voltages[J]. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(3): 342-351. |
8 | WANG J, QIU B, CAO H L, et al. Electrochemical properties of 0.6Li[Li1/3Mn2/3]O2-0.4LiNixMnyCo1- x- yO2 cathode materials for lithium-ion batteries[J]. Journal of Power Sources, 2012, 218: 128-133. |
9 | 陈一鸣. 锂离子电池电极孔隙率分布及对倍率性能的影响研究[D]. 武汉: 华中科技大学, 2020. |
CHEN Y M. Study on porosity distribution of lithium-ion battery electrode and its effect on rate performance[D]. Wuhan: Huazhong University of Science and Technology, 2020. | |
10 | 覃宇夏, 李奇, 熊英, 等. 锂离子电池高倍率放电性能的影响因素[J]. 电池, 2009, 39(3): 142-144. |
QIN Y X, LI Q, XIONG Y, et al. The influence factors of high rate discharge performance of Li-ion battery[J]. Battery Bimonthly, 2009, 39(3): 142-144. | |
11 | KONDO H, SRINIVASAN V. Simulation study of rate limiting factors of Li-ion batteries using experimental functions of electronic and ionic resistances[J]. Electrochimica Acta, 2021, 371: doi: 10.1016/j.electacta.2021.137834. |
12 | LIU C H, LIU L. Optimal design of Li-ion batteries through multi-physics modeling and multi-objective optimization[J]. Journal of the Electrochemical Society, 2017, 164(11): doi: 10.1149/2.0291711jes. |
13 | DANNER T, SINGH M, HEIN S, et al. Thick electrodes for Li-ion batteries: A model based analysis[J]. Journal of Power Sources, 2016, 334: 191-201. |
14 | 陈元丽, 赵振东, 杨泰隆. 三元锂电池放电容量影响因素的试验分析[J]. 南京工程学院学报(自然科学版), 2020, 18(1): 60-63. |
CHEN Y L, ZHAO Z D, YANG T L. Experimental analysis of factors affecting discharge capacity of ternary lithium batteries[J]. Journal of Nanjing Institute of Technology (Natural Science Edition), 2020, 18(1): 60-63. | |
15 | DOYLE M, NEWMAN J, GOZDZ A S, et al. Comparison of modeling predictions with experimental data from plastic lithium ion cells[J]. Journal of the Electrochemical Society, 1996, 143(6): 1890-1903. |
16 | NEWMAN J, TIEDEMANN W. Porous-electrode theory with battery applications[J]. AIChE Journal, 1975, 21(1): 25-41. |
17 | DOYLE M, FULLER T F, NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6): 1526-1533. |
18 | VALO̸EN L O, REIMERS J N. Transport properties of LiPF6-based Li-ion battery electrolytes[J]. Journal of the Electrochemical Society, 2005, 152(5): doi: 10.1149/1.1872737. |
19 | GUO H J, LI X H, ZHANG X M, et al. Diffusion coefficient of lithium in artificial graphite, mesocarbon microbeads, and disordered carbon[J]. New Carbon Materials, 2007, 22(1): 7-10. |
20 | 靳尉仁, 卢世刚, 庞静. 数学模拟方法研究导电剂形貌对锂离子电池高倍率放电性能的影响[J]. 无机化学学报, 2011, 27(9): 1675-1684. |
JIN W R, LU S G, PANG J. Effect of conductive agent morphology on high rate discharge capability of Li-ion batteries by mathematical simulation[J]. Chinese Journal of Inorganic Chemistry, 2011, 27(9): 1675-1684. |
[1] | Ting TING, Qihang LIN, Changyang LIU, Liuzhen BIAN, Chao SUN, QI Ji, Jihua PENG, Shengli AN. Research progress in modification of manganese dioxide as cathode materials for aqueous zinc-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(3): 754-767. |
[2] | Xin ZHENG, Hao YU, Xiaoyu GUO, Ying ZHOU, Yuanjie ZUO, Yujia LIU. Design optimization of integrated energy system using liquid flow battery and heating and cooling storage energy system [J]. Energy Storage Science and Technology, 2023, 12(3): 870-877. |
[3] | Kuijie LI, Ping LOU, Minyuan GUAN, Jinlong MO, Weixin ZHANG, Yuancheng CAO, Shijie CHENG. A review of multi-dimensional signal evolution and coupling mechanism of lithium-ion battery thermal runaway [J]. Energy Storage Science and Technology, 2023, 12(3): 899-912. |
[4] | Mai FENG, Nan CHEN, Renjie CHEN. Research progress of low-temperature electrolyte for lithium-ion battery [J]. Energy Storage Science and Technology, 2023, 12(3): 792-807. |
[5] | Zhixiang CHENG, Wei CAO, Bo HU, Yunfang CHENG, Xin LI, Lihua JIANG, Kaiqiang JIN, Qingsong WANG. Thermal runaway and explosion propagation characteristics of large lithium iron phosphate battery for energy storage station [J]. Energy Storage Science and Technology, 2023, 12(3): 923-933. |
[6] | Xue YUAN, Hongji LI, Wenhui BAI, Zhengxi LI, Libin YANG, Kai WANG, Zhe CHEN. Application of biomass-derived carbon-based anode materials in sodium ion battery [J]. Energy Storage Science and Technology, 2023, 12(3): 721-742. |
[7] | Xinhao ZHAO, Liang XU. Improved firefly optimization algorithm to optimize back propagation neural network for state of health estimation of power lithium ion batteries [J]. Energy Storage Science and Technology, 2023, 12(3): 934-940. |
[8] | Zihao LIU, Xuesong ZHANG, Da LIN, Liqing SUN, Zhengyang LI, Rui XIONG. Joint energy and power state estimation method for energy storage battery based on extended Kalman filter [J]. Energy Storage Science and Technology, 2023, 12(3): 913-922. |
[9] | Yiming YAO, Weiling LUAN, Ying CHEN, Min SUN. Recent progress in aging degradation of lithium-ion battery materials via in-situ optical microscopy [J]. Energy Storage Science and Technology, 2023, 12(3): 777-791. |
[10] | Zhifu WANG, Wei LUO, Yuan YAN, Song XU, Wenmei HAO, Conglin ZHOU. Fault diagnosis of lithium-ion battery sensors using GAPSO-FNN [J]. Energy Storage Science and Technology, 2023, 12(2): 602-608. |
[11] | Deliu ZHANG, Yan ZHANG, Hai WANG, Jiadong WANG, Xuanwen GAO, Chaomeng LIU, Dongrun YANG, Wenbin LUO. Optimization of high nickel cathode materials for lithium ion batteries by magnesium doped heterogeneous aluminum oxide coating [J]. Energy Storage Science and Technology, 2023, 12(2): 339-348. |
[12] | Fan YANG, Jiarui HE, Ming LU, Lingxia LU, Miao YU. SOC estimation of lithium-ion batteries based on BP-UKF algorithm [J]. Energy Storage Science and Technology, 2023, 12(2): 552-559. |
[13] | Guihong GAO, Shenshen LI, Fuyuan LIU, Xiangkun WU, Yanxia LIU. Study on the influence of particle composition on the performance of lithium slurry batteries [J]. Energy Storage Science and Technology, 2023, 12(2): 329-338. |
[14] | Xueqing SHEN, Wei CHEN. Thermal management performance of batteries with embedded tree-like fins for phase transition layers [J]. Energy Storage Science and Technology, 2023, 12(2): 459-467. |
[15] | Lulu LI, Zhengshun TAO, Tinglong PAN, Weilin YANG, Guanyang HU. Research on fractional modeling and SOC estimation strategy for lithium batteries [J]. Energy Storage Science and Technology, 2023, 12(2): 544-551. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||