Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (10): 3319-3333.doi: 10.19799/j.cnki.2095-4239.2024.0248
• Energy Storage Materials and Devices • Previous Articles Next Articles
Xiaofeng MA1,2(), Qinjun SHAO1, Jian CHEN1()
Received:
2024-03-20
Revised:
2024-04-08
Online:
2024-10-28
Published:
2024-10-30
Contact:
Jian CHEN
E-mail:maxf@dicp.ac.cn;chenjian@dicp.ac.cn
CLC Number:
Xiaofeng MA, Qinjun SHAO, Jian CHEN. Preparation and research of W-doped α-MoO3 as anode materials for proton battery[J]. Energy Storage Science and Technology, 2024, 13(10): 3319-3333.
1 | YANG Z G, ZHANG J L, KINTNER-MEYER M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613. DOI: 10.1021/cr100290v. |
2 | JI X L. A paradigm of storage batteries[J]. Energy & Environmental Science, 2019, 12(11): 3203-3224. DOI: 10.1039/C9EE02356A. |
3 | DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935. DOI: 10.1126/science.1212741. |
4 | POSADA J O G, RENNIE A J R, VILLAR S P, et al. Aqueous batteries as grid scale energy storage solutions[J]. Renewable and Sustainable Energy Reviews, 2017, 68: 1174-1182. DOI: 10.1016/j.rser.2016.02.024. |
5 | CHAO D L, ZHOU W H, XIE F X, et al. Roadmap for advanced aqueous batteries: From design of materials to applications[J]. Science Advances, 2020, 6(21): eaba4098. DOI: 10.1126/sciadv.aba4098. |
6 | AHN H, KIM D, LEE M J, et al. Challenges and possibilities for aqueous battery systems[J]. Communications Materials, 2023, 4: 37. DOI: 10.1038/s43246-023-00367-2. |
7 | JIANG L W, LU Y X, ZHAO C L, et al. Building aqueous K-ion batteries for energy storage[J]. Nature Energy, 2019, 4: 495-503. DOI: 10.1038/s41560-019-0388-0. |
8 | YUE J M, LIN L D, JIANG L W, et al. Interface concentrated-confinement suppressing cathode dissolution in water-in-salt electrolyte[J]. Advanced Energy Materials, 2020, 10(36): 2000665. DOI: 10.1002/aenm.202000665. |
9 | KIM H, HONG J, PARK K Y, et al. Aqueous rechargeable Li and Na ion batteries[J]. Chemical Reviews, 2014, 114(23): 11788-11827. DOI: 10.1021/cr500232y. |
10 | GAO H, TANG K K, XIAO J, et al. Recent advances in "water in salt" electrolytes for aqueous rechargeable monovalent-ion (Li+, Na+, K+) batteries[J]. Journal of Energy Chemistry, 2022, 69: 84-99. DOI: 10.1016/j.jechem.2021.12.025. |
11 | HUANG J H, GUO Z W, MA Y Y, et al. Recent progress of rechargeable batteries using mild aqueous electrolytes[J]. Small Methods, 2019, 3(1): 1800272. DOI: 10.1002/smtd.201800272. |
12 | TANG Y C, LI X J, LV H M, et al. High-energy aqueous magnesium hybrid full batteries enabled by carrier-hosting potential compensation[J]. Angewandte Chemie International Edition, 2021, 60(10): 5443-5452. DOI: 10.1002/anie.202013315. |
13 | BALLAND V, MATEOS M, SINGH A, et al. The role of Al3+-based aqueous electrolytes in the charge storage mechanism of MnOx cathodes[J]. Small, 2021, 17(23): DOI: 10.1002/smll.202101515. |
14 | NIAN Q S, SUN T J, LIU S, et al. Issues and opportunities on low-temperature aqueous batteries[J]. Chemical Engineering Journal, 2021, 423: 130253. DOI: 10.1016/j.cej.2021.130253. |
15 | WU Y Z, ZHANG K, CHEN S B, et al. Proton inserted manganese dioxides as a reversible cathode for aqueous Zn-ion batteries[J]. ACS Applied Energy Materials, 2020, 3(1): 319-327. DOI: 10.1021/acsaem.9b01554. |
16 | TIAN Y P, JU M M, BIN X Q, et al. Long cycle life aqueous rechargeable battery Zn/vanadium hexacyanoferrate with H+/Zn2+ coinsertion for high capacity[J]. Chemical Engineering Journal, 2022, 430: 132864. DOI: 10.1016/j.cej.2021.132864. |
17 | HUANG M, WANG X P, WANG J J, et al. Proton/Mg2+ co-insertion chemistry in aqueous Mg-ion batteries: From the interface to the inner[J]. Angewandte Chemie International Edition, 2023, 62(37): e202308961. DOI: 10.1002/anie.202308961. |
18 | CHEN Y, FAN K, GAO Y B, et al. Challenges and perspectives of organic multivalent metal-ion batteries[J]. Advanced Materials, 2022, 34(52): e2200662. DOI: 10.1002/adma.202200662. |
19 | SUN W, WANG F, HOU S, et al. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion[J]. Journal of the American Chemical Society, 2017, 139(29): 9775-9778. DOI: 10.1021/jacs.7b04471. |
20 | HUANG C X, ZHANG W, ZHENG W T. Proton batteries shape the next energy storage[J]. Energy Storage Materials, 2023, 61: 102913. DOI: 10.1016/j.ensm.2023.102913. |
21 | SHIMIZU G K H, TAYLOR J M, KIM S. Proton conduction with metal-organic frameworks[J]. Science, 2013, 341(6144): 354-355. DOI: 10.1126/science.1239872. |
22 | WU X Y, HONG J J, SHIN W, et al. Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries[J]. Nature Energy, 2019, 4: 123-130. DOI: 10.1038/s41560-018-0309-7. |
23 | DAI Y J, ZHANG J Z, YAN X R, et al. Investigating the electrochemical performance of MnO2 polymorphs as cathode materials for aqueous proton batteries[J]. Chemical Engineering Journal, 2023, 471: 144158. DOI: 10.1016/j.cej.2023.144158. |
24 | XU Y K, WU X Y, JI X L. The renaissance of proton batteries[J]. Small Structures, 2021, 2(5): 2000113. DOI: 10.1002/sstr.202000113. |
25 | YANG B B, QIN T, DU Y Y, et al. Rocking-chair proton battery based on a low-cost "water in salt" electrolyte[J]. Chemical Communications, 2022, 58(10): 1550-1553. DOI: 10.1039/D1CC06325A. |
26 | TOMAI T, MITANI S, KOMATSU D, et al. Metal-free aqueous redox capacitor via proton rocking-chair system in an organic-based couple[J]. Scientific Reports, 2014, 4: 3591. DOI: 10.1038/srep03591. |
27 | MITCHELL J B, LO W C, GENC A, et al. Transition from battery to pseudocapacitor behavior via structural water in tungsten oxide[J]. Chemistry of Materials, 2017, 29(9): 3928-3937. DOI: 10.1021/acs.chemmater.6b05485. |
28 | GENG C, SUN T L, WANG Z C, et al. Surface-induced desolvation of hydronium ion enables anatase TiO2 as an efficient anode for proton batteries[J]. Nano Letters, 2021, 21(16): 7021-7029. DOI: 10.1021/acs.nanolett.1c02421. |
29 | GUO H C, GOONETILLEKE D, SHARMA N, et al. Two-phase electrochemical proton transport and storage in α-MoO3 for proton batteries[J]. Cell Reports Physical Science, 2020, 1(10): 100225. DOI: 10.1016/j.xcrp.2020.100225. |
30 | LUKATSKAYA M R, KOTA S, LIN Z F, et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides[J]. Nature Energy, 2017, 2(8): 17105. DOI: 10.1038/nenergy.2017.105. |
31 | WANG X F, BOMMIER C, JIAN Z L, et al. Hydronium-ion batteries with perylenetetracarboxylic dianhydride crystals as an electrode[J]. Angewandte Chemie International Edition, 2017, 56(11): 2909-2913. DOI: 10.1002/anie.201700148. |
32 | JIANG H, SHIN W, MA L, et al. A high-rate aqueous proton battery delivering power below -78 ℃ via an unfrozen phosphoric acid[J]. Advanced Energy Materials, 2020, 10(28): 2000968. DOI: 10.1002/aenm.202000968. |
33 | ZHAO G, YAN X, DAI Y, et al. Searching high-potential dihydroxynaphthalene cathode for rocking-chair all-organic aqueous proton batteries[J]. Small (Weinheim an Der Bergstrasse, Germany), 2024, 20(4): e2306071. DOI: 10.1002/smll.202306071. |
34 | SUN T J, DU H H, ZHENG S B, et al. Bipolar organic polymer for high performance symmetric aqueous proton battery[J]. Small Methods, 2021, 5(8): e2100367. DOI: 10.1002/smtd.202100367. |
35 | CHITHAMBARARAJ A, RAJESWARI YOGAMALAR N, BOSE A C. Hydrothermally synthesized h-MoO3 and α-MoO3 nanocrystals: New findings on crystal-structure-dependent charge transport[J]. Crystal Growth & Design, 2016, 16(4): 1984-1995. DOI: 10.1021/acs.cgd.5b01571. |
36 | ZHOU L, YANG L C, YUAN P, et al. α-MoO3 nanobelts: A high performance cathode material for lithium ion batteries[J]. The Journal of Physical Chemistry C, 2010, 114(49): 21868-21872. DOI: 10.1021/jp108778v. |
37 | MA Z H, SHI X M, NISHIMURA S I, et al. Anhydrous fast proton transport boosted by the hydrogen bond network in a dense oxide-ion array of α-MoO3[J]. Advanced Materials, 2022, 34(34): 2203335. DOI: 10.1002/adma.202203335. |
38 | WU S C, CHEN J B, SU Z, et al. Molecular crowding electrolytes for stable proton batteries[J]. Small, 2022, 18(45): e2202992. DOI: 10.1002/smll.202202992. |
39 | WANG C G, ZHAO S S, SONG X X, et al. Suppressed dissolution and enhanced desolvation in core-shell MoO3@TiO2 nanorods as a high-rate and long-life anode material for proton batteries[J]. Advanced Energy Materials, 2022, 12(19): 2200157. DOI: 10.1002/aenm.202200157. |
40 | SU Z, CHEN J B, STANSBY J, et al. Hydrogen-bond disrupting electrolytes for fast and stable proton batteries[J]. Small, 2022, 18(22): DOI: 10.1002/smll.202201449. |
41 | YIN C, WAN L Y, QIU B, et al. Boosting energy efficiency of Li-rich layered oxide cathodes by tuning oxygen redox kinetics and reversibility[J]. Energy Storage Materials, 2021, 35: 388-399. DOI: 10.1016/j.ensm.2020.11.034. |
42 | CHOI J, LEE S Y, YOON S, et al. The role of Zr doping in stabilizing Li[Ni0.6Co0.2Mn0.2]O2 as a cathode material for lithium-ion batteries[J]. ChemSusChem, 2019, 12(11): 2439-2446. DOI: 10.1002/cssc.201900500. |
43 | MITORAJ M P, MICHALAK A. On the asymmetry in molybdenum-oxygen bonding in the MoO3 structure: ETS-NOCV analysis[J]. Structural Chemistry, 2012, 23(5): 1369-1375. DOI: 10.1007/s11224-012-0056-5. |
44 | ZHAI H J, KIRAN B, CUI L F, et al. Electronic structure and chemical bonding in MOn- and MOn clusters (M = Mo, W; n = 3-5): A photoelectron spectroscopy and ab initio study[J]. Journal of the American Chemical Society, 2004, 126(49): 16134-16141. DOI: 10.1021/ja046536s. |
45 | SU Z, REN W H, GUO H C, et al. Ultrahigh areal capacity hydrogen-Ion batteries with MoO3 loading over 90 mg cm–2[J]. Advanced Functional Materials, 2020, 30(46): 2005477. DOI: 10.1002/adfm.202005477. |
46 | HUANG S, OUYANG T, ZHENG B F, et al. Enhanced photoelectrocatalytic activities for CH3OH-to-HCHO conversion on Fe2O3/MoO3: Fe-O-Mo covalency dominates the intrinsic activity[J]. Angewandte Chemie International Edition, 2021, 60(17): 9546-9552. DOI: 10.1002/anie.202101058. |
47 | GANTA D, SINHA S, HAASCH R T. 2-D material molybdenum disulfide analyzed by XPS[J]. Surface Science Spectra, 2014, 21(1): 19-27. DOI: 10.1116/11.20140401. |
48 | WEN M Q, CHEN X X, ZHENG Z B, et al. In-plane anisotropic Raman spectroscopy of van der waals α-MoO3[J]. The Journal of Physical Chemistry C, 2021, 125(1): 765-773. DOI: 10.1021/acs.jpcc.0c09178. |
49 | MESTL G, RUIZ P, DELMON B, et al. Oxygen-exchange properties of MoO3: An in situ Raman spectroscopy study[J]. The Journal of Physical Chemistry, 1994, 98(44): 11269-11275. DOI: 10.1021/j100095a007. |
50 | HU X K, QIAN Y T, SONG Z T, et al. Comparative study on MoO3 and HxMoO3 nanobelts: Structure and electric transport[J]. Chemistry of Materials, 2008, 20(4): 1527-1533. DOI: 10.1021/cm702942y. |
51 | EDA K, SUKEJIMA A, SOTANI N. A new synthetic route for mixed-valence compounds: Leaching treatments of hydrogen molybdenum bronze[J]. Journal of Solid State Chemistry, 2001, 159(1): 51-58. DOI: 10.1006/jssc.2001.9129. |
52 | GUO H C, WAN L Y, TANG J Q, et al. Stable colloid-in-acid electrolytes for long life proton batteries[J]. Nano Energy, 2022, 102: 107642. DOI: 10.1016/j.nanoen.2022.107642. |
[1] | Xinxin ZHANG, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Qiangfu SUN, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xueji HUANG. In-depth review of 100 pioneering studies on lithium batteries: Key innovations from June 1, 2024 to July 31, 2024 [J]. Energy Storage Science and Technology, 2024, 13(9): 3226-3244. |
[2] | Yanyan KONG, Xiong ZHANG, Yabin AN, Chen LI, Xianzhong SUN, Kai WANG, Yanwei MA. Recent advances in preparation of MOF-derived porous carbon-based materials and their applications in anodes of lithium-ion capacitors [J]. Energy Storage Science and Technology, 2024, 13(8): 2665-2678. |
[3] | Zhiyong WANG, Junyao CAI, Yingqi SHE, Shulin ZHONG, Kanghua PAN. Surface-modification of graphite with N-heterocyclic conducting polymers as high performance anodes for Li-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2511-2518. |
[4] | Yuan YAO, Ruoqi ZONG, Jianli GAI. Research progress of antimony- and bismuth-based metallic anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2649-2664. |
[5] | Lijun FAN, Baozhou WU, Kejun CHEN. Controllable synthesis of FeS2 with different morphologies and their sodium storage performances [J]. Energy Storage Science and Technology, 2024, 13(8): 2541-2549. |
[6] | Guozheng MA, Jinwei CHEN, Xingyu XIONG, Zhenzhong YANG, Gang ZHOU, Rengzong HU. High-rate lithium storage performance of SnSb-Li4Ti5O12 composite anode for Li-ion batteries at low-temperature [J]. Energy Storage Science and Technology, 2024, 13(7): 2107-2115. |
[7] | Junfeng HAO, Jing ZHU, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Qiangfu SUN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. A review of 100 selected recent studies on lithium batteries (April 1, 2024—May 31, 2024) [J]. Energy Storage Science and Technology, 2024, 13(7): 2361-2376. |
[8] | Pengfei XIAO, Lin MEI, Libao CHEN. Multicomponent-coated graphite composite anodes for low-temperature electrochemical energy storage [J]. Energy Storage Science and Technology, 2024, 13(7): 2116-2123. |
[9] | Dan LI, Tie MA, Hanhao LIU, Li GUO. Carbon-coated nano-bismuth as high-rate sodium anode material [J]. Energy Storage Science and Technology, 2024, 13(6): 1775-1785. |
[10] | Renchao FENG, Yu DONG, Xinyu ZHU, Cai LIU, Sheng CHEN, Da LI, Ruoyu GUO, Bin WANG, Jionghui WANG, Ning LI, Yuefeng SU, Feng WU. Research progress on graphite oxide-based anodes for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1835-1848. |
[11] | Yuanyuan JIANG, Fangfang TU, Fangping ZHANG, Yinglai WANG, Jiawen CAI, Donghui YANG, Yanhong LI, Jiayuan XIANG, Xinhui XIA, Jipeng FU. Study on technology and mechanism of prelithiation for high-performance lithium iron phosphate battery [J]. Energy Storage Science and Technology, 2024, 13(5): 1435-1442. |
[12] | Min SHI, Pengjie JIANG, Chen XU, Xin HE, Xiao LIANG. Advancements in electrolyte optimization strategies for inhibiting lithium dendrite growth [J]. Energy Storage Science and Technology, 2024, 13(5): 1620-1634. |
[13] | Jing ZHU, Junfeng HAO, Qiangfu SUN, Xinxin ZHANG, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2024 to Mar. 31, 2024) [J]. Energy Storage Science and Technology, 2024, 13(5): 1398-1416. |
[14] | Qiangfu SUN, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2023 to Jan. 31, 2024) [J]. Energy Storage Science and Technology, 2024, 13(3): 725-741. |
[15] | Xiuli GUO, Xiaolong ZHOU, Caineng ZOU, Yongbing TANG. Research progress and perspectives of aqueous dual-ions batteries [J]. Energy Storage Science and Technology, 2024, 13(2): 462-479. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||