Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (8): 2932-2941.doi: 10.19799/j.cnki.2095-4239.2025.0523
• Special Issue on Short Term High-Frequency High-Power Energy Storage • Previous Articles
Xiankui WEN1(), Bowen LI1, Zhengjun SHI2,3(
), Huayang YE1, Lingrong PANG1, Xiaoyin ZHANG2
Received:
2025-06-03
Revised:
2025-06-30
Online:
2025-08-28
Published:
2025-08-18
Contact:
Zhengjun SHI
E-mail:13985410224@139.com;shizj02@139.com
CLC Number:
Xiankui WEN, Bowen LI, Zhengjun SHI, Huayang YE, Lingrong PANG, Xiaoyin ZHANG. Analysis of electromagnetic and thermal characteristics of magnetic bearings in flywheel energy storage systems[J]. Energy Storage Science and Technology, 2025, 14(8): 2932-2941.
[1] | 唐西胜, 娄彦涛, 戴兴建, 等. 飞轮储能技术及其构网应用展望[J]. 电力系统自动化, 2025, 49(11): 1-13. |
TANG X S, LOU Y T, DAI X J, et al. Flywheel energy storage technology and prospect of its grid-forming application[J]. Automation of Electric Power Systems, 2025, 49(11): 1-13. | |
[2] | 吴刚, 刘昆, 张育林. 磁悬浮飞轮技术及其应用研究[J]. 宇航学报, 2005, 26(3): 385-390. DOI: 10.3321/j.issn: 1000-1328.2005.03.029. |
WU G, LIU K, ZHANG Y L. Application and study of magnetic bearing flywheel technology[J]. Journal of Astronautics, 2005, 26(3): 385-390. DOI: 10.3321/j.issn: 1000-1328.2005.03.029. | |
[3] | LIN Z, LIU K, ZHANG W. Inertially stabilized platform for airborne remote sensing using magnetic breaings[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(1): 288-301. |
[4] | MU Q Q, LIU G, LEI X S. A RBFNN-based adaptive disturbance compensation approach applied to magnetic suspension inertially stabilized platform[J]. Mathematical Problems in Engineering, 2014, 2014(1): 657985. DOI: 10.1155/2014/657985. |
[5] | FANG J C, WANG C E, WEN T. Design and optimization of a radial hybrid magnetic bearing with separate poles for magnetically suspended inertially stabilized platform[J]. IEEE Transactions on Magnetics, 2014, 50(5): 8101011. DOI: 10.1109/TMAG.2013.2293482. |
[6] | 张和洪. 多自由度磁浮式精密定位平台悬浮控制技术研究[D]. 长沙: 国防科学技术大学, 2015. |
[7] | 杨盛林, 刘昱, 刘玉峰. 惯性平台热场分析及热设计的改进[J]. 中国惯性技术学报, 2005, 13(1): 5-9. DOI: 10.3969/j.issn.1005-6734. 2005.01.002. |
YANG S L, LIU Y, LIU Y F. Research on heat field of inertial platform and improvement on heat design[J]. Journal of Chinese Inertial Technology, 2005, 13(1): 5-9. DOI: 10.3969/j.issn.1005-6734.2005.01.002. | |
[8] | 叶品州. 径向电磁轴承铁心损耗计算方法与温度场仿真分析[D]. 济南: 山东大学, 2020. DOI: 10.27272/d.cnki.gshdu.2020.002243. |
[9] | 江善林. 高速永磁同步电机的损耗分析与温度场计算[D]. 哈尔滨: 哈尔滨工业大学, 2010. |
JIANG S L. High-speed permanent magnet synchronous motor loss analysis and temperature field calculation[D]. Harbin: Harbin Institute of Technology, 2010. | |
[10] | 郝叶. 100kW、50000r/min高速永磁同步电机的设计与分析[D]. 沈阳: 沈阳工业大学, 2017. |
HAO Y. Design and analysis of 100kW and 50000r/min high-speed permanent magnet synchronous motor[D]. Shenyang: Shenyang University of Technology, 2017. | |
[11] | 戴兴建, 卫海岗, 沈祖培. 储能飞轮转子轴承系统动力学设计与试验研究[J]. 机械工程学报, 2003, 39(4): 97-101. DOI: 10.3321/j.issn: 0577-6686.2003.04.022. |
DAI X J, WEI H G, SHEN Z P. Dynamics design and experiment study of the rotor-bearing system of a flywheel energy storage system[J]. Chinese Journal of Mechanical Engineering, 2003, 39(4): 97-101. DOI: 10.3321/j.issn: 0577-6686.2003.04.022. | |
[12] | 陈小飞, 吉莉, 刘昆. 基于BP神经网络的磁悬浮飞轮控制[J]. 航天控制, 2010, 28(5): 3-8. DOI: 10.16804/j.cnki.issn1006-3242.2010. 05.001. |
CHEN X F, JI L, LIU K. Control of magnetic suspended flywheel using BP neural network[J]. Aerospace Control, 2010, 28(5): 3-8. DOI: 10.16804/j.cnki.issn1006-3242.2010.05.001. | |
[13] | 陈峻峰, 刘昆, 梁文杰, 等. 磁悬浮飞轮储能系统机电耦合非线性动力学研究[J]. 动力学与控制学报, 2013, 11(3): 225-234. DOI: 10.6052/1672-6553-2013-062. |
CHEN J F, LIU K, LIANG W J, et al. Study on nonlinear dynamics of electromechanical coupling in flywheel energy storage system based on active magnetic bearings[J]. Journal Fo Dynamics and Control, 2013, 11(3): 225-234. DOI: 10.6052/1672-6553-2013-062. | |
[14] | 赵巍龙, 张志洲, 李优, 等. 轻量型机载惯性稳定平台电磁轴承性能与温度场仿真分析[J]. 轴承, 2024(7): 115-121, 137. DOI: 10. 19533/j.issn1000-3762.2024.07.015. |
ZHAO W L, ZHANG Z Z, LI Y, et al. Simulation analysis on performance and temperature field of electromagnetic bearings for lightweight airborne inertial stabilization platform[J]. Bearing, 2024(7): 115-121, 137. DOI: 10.19533/j.issn1000-3762.2024.07.015. | |
[15] | 刘钙, 朱熀秋. 飞轮储能用磁轴承综述[J]. 轴承, 2024(1): 9-18, 48. DOI: 10.19533/j.issn1000-3762.2024.01.002. |
LIU G, ZHU H Q. Review of magnetic bearings for flywheel energy storage[J]. Bearing, 2024(1): 9-18, 48. DOI: 10.19533/j.issn1000-3762.2024.01.002. |
[1] | Bowen LI, Xiankui WEN, Qiang FAN, Tingyun GU, Zhengjun SHI, Xiaoyin ZHANG. Experimental study on heat dissipation through circulation in the hollow shaft of MW-class flywheel motor rotor [J]. Energy Storage Science and Technology, 2025, 14(8): 2925-2931. |
[2] | Rengaowa SA, Chaohui WU, Zelong NI, Yue ZHANG, Xinjian JIANG, Jianyu TIAN. A variable-parameter PID active power control strategy of inertial flywheel based on reinforcement learning [J]. Energy Storage Science and Technology, 2025, 14(5): 1982-1990. |
[3] | Yifei WANG, Fan XU, Liang WANG, Xingjian DAI, Yujie XU, Haisheng CHEN. Analysis and design on stator heat dissipation of motor in flywheel energy storage system [J]. Energy Storage Science and Technology, 2025, 14(5): 1946-1953. |
[4] | Qingxiang XU, Wei TENG, Run QIN, Shunyi SONG, Yibing LIU, Shuangyin LIANG. Energy management and control strategy for grid-connected frequency regulation flywheel energy storage systems [J]. Energy Storage Science and Technology, 2025, 14(5): 2013-2022. |
[5] | Wenqi DONG, Donghui ZHANG, Yifan CAO, Zhaoxuan NING, Xinjian JIANG, Ming LI, Xuewei SHI. The control strategies concerning the new type inertia flywheel and high-speed flywheel involved in the grid inertia response and primary frequency modulation [J]. Energy Storage Science and Technology, 2025, 14(3): 1224-1233. |
[6] | Yuguang LI, Xiang LIU, Yanzhao LIANG, Shuangzhen LIU. Research on the application of flywheel energy storage device in rail transit [J]. Energy Storage Science and Technology, 2024, 13(8): 2679-2686. |
[7] | Qianqian ZHOU, Yong HUANG, Ke CUI, Danan SUN. Research and test verification on simulation technology of motor temperature field of flywheel energy storage device [J]. Energy Storage Science and Technology, 2024, 13(8): 2589-2596. |
[8] | Du JIN, Guangchen LIU, Bowen SUN, Tianyuan HUANG, Jianwei ZHANG, Guizhen TIAN, Lili JING. Primary frequency modulation control strategy for flywheel energy storage counting and wind farms [J]. Energy Storage Science and Technology, 2024, 13(6): 1911-1920. |
[9] | Haifeng MA, Wenbo LI, Zonghui CAI, Lin LIU, Tong YU. Research on computer processing technology of flywheel energy storage system [J]. Energy Storage Science and Technology, 2024, 13(6): 1983-1985. |
[10] | Hong LI, Jiangyi LV, Jiantong SONG, Dong YAN. Analysis of energy characteristics of electromechanical composite energy storage system for vehicles [J]. Energy Storage Science and Technology, 2024, 13(3): 906-913. |
[11] | Fan XU, Xingjian DAI, Youlong WANG, Dongxu HU, Hualiang ZHANG, Haisheng CHEN. Research progress on permanent magnet machines for flywheel energy storage [J]. Energy Storage Science and Technology, 2024, 13(10): 3423-3441. |
[12] | Zhiguo ZHANG, Gang WANG, Jing YANG, Shuping WANG, Dong LIU, Wufeng RAO. Research on the application of MW-level flywheel array for primary frequency regulation in wind farms [J]. Energy Storage Science and Technology, 2024, 13(10): 3569-3578. |
[13] | Xinglong ZUO, Yibing LIU, Run QIN, Wenhao QU, Wei TENG. Dynamic characteristics of flywheel energy storage virtual synchronous machine and analysis of power system frequency improvement [J]. Energy Storage Science and Technology, 2023, 12(6): 1920-1927. |
[14] | Bin LI, Jilei YE, Yu ZHANG, Shanshan SHI, Haojing WANG, Lili LIU, Mingzhe LI. Microgrid-coordinated control strategy with distributed new energy and electro-mechanical hybrid energy storage [J]. Energy Storage Science and Technology, 2023, 12(5): 1510-1515. |
[15] | Haishan LIU, Xianlong XU, Shuzhou WEI, Yalei PANG, Feng HONG. Flywheel energy storage participates in frequency modulation power division control based on improving power grid assessment index of north China power grid [J]. Energy Storage Science and Technology, 2023, 12(4): 1176-1184. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||