Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (11): 4065-4084.doi: 10.19799/j.cnki.2095-4239.2025.0960
• Research Highlight • Next Articles
Qiangfu SUN1(
), Guanjun CEN1, Ronghan QIAO1, Changyang LIU1, Junfeng HAO1, Xinxin ZHANG1, Bowen ZHENG1, Yuhao GU1, Mengyu TIAN2, Zhou JIN2, Yuanjie ZHAN2, Yong YAN2, Liubin BEN1,2, Hailong YU1, Yanyan LIU1, Hong ZHOU3, Xuejie HUANG1,2(
)
Received:2025-10-24
Online:2025-11-28
Published:2025-11-24
Contact:
Xuejie HUANG
E-mail:sunqiangfu22@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
CLC Number:
Qiangfu SUN, Guanjun CEN, Ronghan QIAO, Changyang LIU, Junfeng HAO, Xinxin ZHANG, Bowen ZHENG, Yuhao GU, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Aug. 1, 2025 to Sep. 30, 2025)[J]. Energy Storage Science and Technology, 2025, 14(11): 4065-4084.
| [1] | LIAO H Y, TANG Y F, MA W Q, et al. Exceptional layered cathode stability at 4.8 V via supersaturated high-valence cation design[J]. Nature Energy, 2025, 10(9): 1107-1115. DOI: 10.1038/s41560-025-01831-8. |
| [2] | LEE W, CHOI M, KIM M, et al. Pinning effects of heavy elements for the structural stability of Ni-based layered oxides[J]. ACS Energy Letters, 2025, 10(9): 4527-4534. DOI: 10.1021/acsenergylett. 5c02563. |
| [3] | XIA Y Y, MAO G H, YAO T Y, et al. One-step biphasic interfacial engineering stabilizes single-crystal ultrahigh-nickel cathodes[J]. Advanced Functional Materials, 2025, e13107. DOI: 10.1002/adfm.202513107. |
| [4] | LIU F Y, LI S H, LEUNG C, et al. Unveiling the origin of oxygen framework stability in ultra-high nickel layered oxide cathodes[J]. Advanced Materials, 2025, 37(15): 2419856. DOI: 10.1002/adma. 202419856. |
| [5] | DUTTA A, HOMLAMAI K, JOHNSON M B, et al. Designing surface coating strategies with tungsten on single crystal NMC materials by XPS[J]. Advanced Energy Materials, 2025, 15(36): e03051. DOI: 10.1002/aenm.202503051. |
| [6] | NIU Y L, ZHUO Z Q, HAO J Z, et al. Designing Co-free medium-Ni layered oxide cathodes via additional Li substitution[J]. Advanced Materials, 2025, 37(42): e07530. DOI: 10.1002/adma.202507530. |
| [7] | HUANG W Y, QIU J M, ZHUO Z Q, et al. A quasi-ordered Mn-rich cathode with highly reversible oxygen anion redox chemistry[J]. Journal of the American Chemical Society, 2025, 147(30): 26218-26225. DOI: 10.1021/jacs.5c03271. |
| [8] | WU H L, DONG J H, LI J T, et al. Modulating surface anionic redox chemistry toward highly stable Li-rich cathodes with negligible oxygen loss[J]. ACS Nano, 2025, 19(16): 15886-15895. DOI: 10.1021/acsnano.5c00630. |
| [9] | PARK G T, PARK N Y, RYU J H, et al. Zero-strain Mn-rich layered cathode for sustainable and high-energy next-generation batteries[J]. Nature Energy, 2025, 10(10): 1215-1225. DOI: 10.1038/s41560-025-01852-3. |
| [10] | WU V C, LAWRENCE E A, LI T Y, et al. High energy density and micrometer-sized d0-free disordered rocksalt cathodes[J]. Energy & Environmental Science, 2025, 18(19): 8918-8928. DOI: 10. 1039/D5EE01564B. |
| [11] | HAN Z B, MAITARAD P, YODSIN N, et al. Catalysis-induced highly-stable interface on porous silicon for high-rate lithium-ion batteries[J]. Nano-Micro Letters, 2025, 17(1): 200. DOI: 10.1007/s40820-025-01701-8. |
| [12] | HUI Z Y, YU S C, WANG S, et al. Nucleation processes at interfaces with both substrate and electrolyte control lithium growth[J]. Nature Chemistry, 2025: 1-10. DOI: 10.1038/s41557-025-01911-y. |
| [13] | WANG F, LU A B, LIU Z D, et al. Tailoring graphite interlayers with electron-acceptor bridges raises ion diffusion kinetics for ultrafast charging batteries[J]. Advanced Materials, 2025, n/a(n/a): e09207. DOI: 10.1002/adma.202509207. |
| [14] | JANG B, SONG Y B, BAECK K H, et al. Revitalizing sulfide solid electrolytes for all-solid-state batteries: Dry-air exposure and microwave-driven regeneration[J]. Advanced Energy Materials, 2025, e02981. DOI: 10.1002/aenm.202502981. |
| [15] | KIM K T, KIM J S, BAECK K H, et al. Surface fluorination shielding of sulfide solid electrolytes for enhanced electrochemical stability in all-solid-state batteries[J]. Advanced Materials, 2025, 37(35): 2416816. DOI: 10.1002/adma.202416816. |
| [16] | MELVIN D L R, SINISCALCHI M, SPENCER-JOLLY D, et al. High plating currents without dendrites at the interface between a lithium anode and solid electrolyte[J]. Nature Energy, 2025, 10(10): 1205-1214. DOI: 10.1038/s41560-025-01847-0. |
| [17] | YANG J L, CHEN S W, YUAN Q, et al. UCl3-type crystalline oxychloride electrolytes for all-solid-state lithium-ion batteries[J]. Journal of the American Chemical Society, 2025, 147(40): 36557-36569. DOI: 10.1021/jacs.5c11480. |
| [18] | FU J M, SU H, LUO J, et al. Chemical bond covalency in superionic halide solid-state electrolytes[J]. Angewandte Chemie, 2025, 137(32): e202508835. DOI: 10.1002/ange.202508835. |
| [19] | ITO D, KUWATA N, TAKEMOTO S, et al. Lattice-matched antiperovskite-perovskite system toward all-solid-state batteries[J]. Nature Communications, 2025, 16: 7372. DOI: 10.1038/s41467-025-62860-1. |
| [20] | DUAN S, ZHANG L F, ZHENG Y, et al. "Rigid exterior, soft interior" design enables high-voltage polyether electrolytes for quasi-solid-state batteries[J]. Angewandte Chemie International Edition, 2025, 64(32): e202502728. DOI: 10.1002/anie.202502728. |
| [21] | QU Y P, SU C, WANG L, et al. Interface engineered electrolyte design strategy for ultralong-cycle solid-state lithium batteries over wide temperature range[J]. Angewandte Chemie International Edition, 2025, 64(27): e202506731. DOI: 10.1002/anie.202506731. |
| [22] | LI M N, RAKOV D A, FAN Y M, et al. Balancing solvation ability of polymer and solvent in gel polymer electrolytes for efficient lithium metal batteries[J]. Angewandte Chemie International Edition, 2025, 64(41): e202513450. DOI: 10.1002/anie.202513450. |
| [23] | GOU J R, CUI K X, WANG S Q, et al. An anisotropic strategy for developing polymer electrolytes endowing lithium metal batteries with electrochemo-mechanically stable interface[J]. Nature Communications, 2025, 16: 3626. DOI: 10.1038/s41467-025-58916-x. |
| [24] | YANG Z Q, YANG B, WANG S, et al. Multivariate distribution structured anisotropic inorganic polymer composite electrolyte for long-cycle and high-energy all-solid-state lithium metal batteries[J]. Angewandte Chemie International Edition, 2025, 64(30): e202423227. DOI: 10.1002/anie.202423227. |
| [25] | ZHENG G R, REN H Y, QIU J M, et al. Additive-regulated interface chemistry enables depolarization for ultra-high capacity LiCoO2[J]. Advanced Materials, 2025, e04106. DOI: 10.1002/adma.202504106. |
| [26] | JI H J, XIANG J W, LI Y, et al. Liquid-liquid interfacial tension stabilized Li-metal batteries[J]. Nature, 2025, 643(8074): 1255-1262. DOI: 10.1038/s41586-025-09293-4. |
| [27] | SONG C, HAN S H, CHOI Y, et al. Geometric design of interface structures and electrolyte solvation chemistry for fast charging lithium-ion batteries[J]. Advanced Materials, 2025, 37(19): 2418773. DOI: 10.1002/adma.202418773. |
| [28] | HE Y P, CHEN T L, ZHANG Y L, et al. EC-less electrolytes for high-safety and long-life nickel-rich lithium-ion batteries[J]. Advanced Functional Materials, 2025, n/a(n/a): e17363. DOI: 10.1002/adfm.202517363. |
| [29] | YAN M Y, LIANG J Y, ZHANG X S, et al. An additive-assisted hydrolysis-blocking route enables thermally stable interfacial chemistry of silicon-based anode materials in a rechargeable lithium battery[J]. Advanced Energy Materials, 2025, 15(33): 2501637. DOI: 10.1002/aenm.202501637. |
| [30] | YANG Y Z, LI Z L, ZHANG M, et al. Electrolyte chemistry modulation toward high-performance and ultralow-temperature silicon anode[J]. Advanced Materials, 2025, 37(15): 2417981. DOI: 10.1002/adma.202417981. |
| [31] | CHEN X L, YU Z L, LI X J, et al. Multifunctional siloxane additive enabling ultrahigh-nickel lithium battery with long cycle life at 30 and 60℃[J]. Small, 2025, 21(7): 2409586. DOI: 10.1002/smll. 202409586. |
| [32] | JIANG S, LI R H, CHEN L, et al. Deciphering the purification additive chemistries for ultra-stable high-voltage lithium-ion batteries[J]. Advanced Materials, 2025, 37(15): 2417285. DOI: 10.1002/adma.202417285. |
| [33] | HUANG H, HU Y T, HOU Y J, et al. Delocalized electrolyte design enables 600 Wh kg-1 lithium metal pouch cells[J]. Nature, 2025, 644(8077): 660-667. DOI: 10.1038/s41586-025-09382-4. |
| [34] | WANG X Y, JI C Y, CHEN H Q, et al. Size-induced high entropy effect for optimized electrolyte design of lithium-ion batteries[J]. Advanced Materials, 2025, e14068. DOI: 10.1002/adma.2025 14068. |
| [35] | ZHAO C X, LI Z, CHEN B, et al. Self-adaptive electrolytes for fast-charging batteries[J]. Nature Energy, 2025, 10(7): 904-913. DOI: 10.1038/s41560-025-01801-0. |
| [36] | DONG S W, SHI L F, ZHANG Y, et al. "Pseudo-charge-transfer complex" electrolyte enables 490 Wh kg-1 lithium metal battery operated from -40 to 80℃[J]. Angewandte Chemie International Edition, 2025, 64(31): e202506750. DOI: 10.1002/anie.202506750. |
| [37] | JANG J, WANG C Z, KANG G M, et al. Miniature Li+ solvation by symmetric molecular design for practical and safe Li-metal batteries[J]. Nature Energy, 2025, 10(4): 502-512. DOI: 10.1038/s41560-025-01733-9. |
| [38] | PARK N Y, LEE H U, YU T Y, et al. High-energy, long-life Ni-rich cathode materials with columnar structures for all-solid-state batteries[J]. Nature Energy, 2025, 10(4): 479-489. DOI: 10.1038/s41560-025-01726-8. |
| [39] | LI Y Y, LI J W, et al. Surface-reconstructed high-nickel cathodes for ultrastable 4.5 V tolerant sulfide-based all-solid-state batteries[J]. ACS Energy Letters, 2025, 10(5): 2203-2211. DOI: 10.1021/acsenergylett.5c00071. |
| [40] | CHEN J Y, ZHANG X D, WU F X, et al. High performance sulfide all-solid-state batteries enabled by Li1.26Mg0.12Zr1.86(PO4)3 coating of iron fluoride cathodes[J]. Journal of Materials Chemistry A, 2025, 13(30): 24578-24589. DOI: 10.1039/D5TA02979A. |
| [41] | HAO X G, DONG Z L, MA J B, et al. A universal solid reaction enabling nanosized Li2S in an amorphous matrix for all-solid-state Li-S batteries[J]. Journal of the American Chemical Society, 2025. DOI: 10.1021/jacs.4c18340. |
| [42] | TANIBATA N, AIZU S, SASADAIRA T, et al. Redox-level design for high-energy-density chloride electrodes[J]. Advanced Energy Materials, 2025, n/a(n/a): e04110. DOI: 10.1002/aenm.202504110. |
| [43] | WANG Z W, XIANG S, LUO J D, et al. Achieving 766.5 Wh kg-1 electrode-level energy density via solid-state cathode integrating ultrahigh nickel oxide and lithium iron chloride[J]. Nano Letters, 2025, 25(34): 12930-12937. DOI: 10.1021/acs.nanolett.5c03012. |
| [44] | WANG Z Y, WANG T R, ZHANG N, et al. Interlayer design for halide electrolytes in all-solid-state lithium metal batteries[J]. Advanced Materials, 2025, 37(30): 2501838. DOI: 10.1002/adma.202501838. |
| [45] | HUANG D, YUAN S Y, ADELSTEIN N, et al. Unveiling the role of lithium iodide in stabilizing solid interfaces in all-solid-state Li metal batteries[J]. ACS Energy Letters, 2025, 10(9): 4553-4559. DOI: 10.1021/acsenergylett.5c01578. |
| [46] | LI R J, ZENG J Y, WANG P Y, et al. A high-performance silicon-based anode enabled by hybrid pathways for all-solid-state batteries[J]. Advanced Energy Materials, 2025, 15(37): e02913. DOI: 10.1002/aenm.202502913. |
| [47] | ZHANG G W, LI D Y, YU D F, et al. Stabilizing halide electrolytes against lithium metal with a self-limiting layer for all-solid-state lithium metal batteries[J]. ACS Nano, 2025, 19(15): 14839-14847. DOI: 10.1021/acsnano.4c18584. |
| [48] | LIANG Z M, NAFIS M S, et al. Pressure-tolerant 3D anodes enable short-circuit prevention and low heat generation in argyrodite solid-state batteries[J]. ACS Energy Letters, 2025, 10(5): 2461-2467. DOI: 10.1021/acsenergylett.5c00985. |
| [49] | HE Y Q, XIONG D F, CHEN M F, et al. Modulating ion-dipole and dipole-dipole interactions for stable wide-temperature-range lithium-sulfur batteries enabled by quantum-dot catalysts[J]. Angewandte Chemie International Edition, 2025, 64(39): e202512168. DOI: 10. 1002/anie.202512168. |
| [50] | GUO C, XUE P, FENG W H, et al. Covalent organic framework quantum dots for near-frictionless ion transport battery electrolyte[J]. Angewandte Chemie International Edition, 2025, 64(39): e202512031. DOI: 10.1002/anie.202512031. |
| [51] | CAO G Q, LI X F, LI M Y, et al. Understanding the electron state effect of iron single-atom for enhancing solid-solid conversion kinetics of sulfur cathodes[J]. Advanced Functional Materials, 2025, 35(36): 2504228. DOI: 10.1002/adfm.202504228. |
| [52] | LI H, CUI L M, WU F L, et al. Kinetically-enhanced gradient modulator layer enables wide-temperature ultralong-life all-solid-state lithium-sulfur batteries[J]. Advanced Energy Materials, 2025, 15(32): 2501259. DOI: 10.1002/aenm.202501259. |
| [53] | ZHONG H Y, UNIVERSITY X, LIN H X, et al. Synergistic regulation of single-atom catalysis and conductive enhancement in all-solid-state Li-S batteries[J]. ACS Energy Letters, 2025, 10(9): 4082-4090. DOI: 10.1021/acsenergylett.5c01856. |
| [54] | QU J J, WANG B J, LI J H, et al. Separating Li-ion and electron conduction pathways to realize robust cathode interfaces[J]. Journal of Materials Chemistry A, 2025, 13(34): 28508-28520. DOI: 10.1039/D5TA04002G. |
| [55] | SUN J Q, WEN B, LI Y G, et al. Improving cycle life of Ni-rich Li-ion battery cathodes by using compartmentalized anode and cathode electrolytes[J]. Small, 2025, 21(11): 2410149. DOI: 10.1002/smll.202410149. |
| [56] | TIAN M Y, QIAO R H, CEN G J, et al. Dual-gradient metal layer for practicalizing high-energy lithium batteries[J]. Nature Communications, 2025, 16: 6864. DOI: 10.1038/s41467-025-62163-5. |
| [57] | JIANG W Y, JIN X, LI B R, et al. Wide temperature range adaptable electric field driven binder for advanced lithium-sulfur batteries[J]. Nature Communications, 2025, 16: 7860. DOI: 10.1038/s41467-025-62909-1. |
| [58] | KOO J K, LIM J, SHIN J, et al. Dry-processed ultra-high-energy cathodes (99.6wt%, 4.0 g cm-3) using single-crystalline Ni-rich oxides[J]. Energy Storage Materials, 2025, 78: 104270. DOI: 10.1016/j.ensm.2025.104270. |
| [59] | PARK J, ZHANG W Y, ZHANG S Y. Cage effect of nitrogen oxide radicals enables Li-NOx cell with a 3.8 V cell voltage[J]. Advanced Materials, 2025, e11299. DOI: 10.1002/adma.202511299. |
| [60] | KANG Z Y, WANG S F, WU G B, et al. Nitrogen-centered organic salts enable stable lithium-ion supply for high-energy-density batteries[J]. Journal of the American Chemical Society, 2025, 147(34): 30591-30598. DOI: 10.1021/jacs.5c09300. |
| [61] | QIN X, ZHAO L, HAN J W, et al. Self-pressure silicon-carbon anodes for low-external-pressure solid-state Li-ion batteries[J]. ACS Nano, 2025, 19(18): 17760-17773. DOI: 10.1021/acsnano. 5c03017. |
| [62] | VETTORI K, SCHRÖDER S, AHRENS L, et al. Chemical and structural degradation of single crystalline high-nickel cathode materials during high-voltage holds[J]. Advanced Energy Materials, 2025, 15(33): 2502148. DOI: 10.1002/aenm.202502148. |
| [63] | GAO X, LI B, KUMMER K, et al. Clarifying the origin of molecular O2 in cathode oxides[J]. Nature Materials, 2025, 24(5): 743-752. DOI: 10.1038/s41563-025-02144-7. |
| [64] | ARIYOSHI K, TANAKA T. Effect of electrochemically active surface area on the charge-transfer resistance of layered positive electrode materials[J]. CrystEngComm, 2025, 27(37): 6122-6126. DOI: 10.1039/D5CE00709G. |
| [65] | CUI Z H, LIU C, WANG F, et al. Navigating thermal stability intricacies of high-nickel cathodes for high-energy lithium batteries[J]. Nature Energy, 2025, 10(4): 490-501. DOI: 10.1038/s41560-025-01731-x. |
| [66] | SHU Y M, ZHAO W G, CHEN H Y, et al. Unraveling and suppression of multi-directional planar slipping and microcracking in single-crystal Co-free, Ni-rich cathodes[J]. Angewandte Chemie International Edition, 2025, 64(39): e202512232. DOI: 10.1002/anie.202512232. |
| [67] | AL-JALJOULI F, MÜCKE R, ROITZHEIM C, et al. Chemo-thermal stress in all-solid-state batteries: Impact of cathode active materials and microstructure[J]. Journal of Power Sources, 2025, 644: 237136. DOI: 10.1016/j.jpowsour.2025.237136. |
| [68] | PAN H Y, JIAO S C, HONG Y S, et al. Probing domain-boundary-induced structural degradation in single-crystalline LiCoO2 by nanoscale imaging[J]. ACS Nano, 2025, 19(29): 26882-26891. DOI: 10.1021/acsnano.5c07834. |
| [69] | DU Y H, ZHAO W G, LI Z J, et al. Modulating surface structural evolution of LiCoO2 for enhanced extreme fast-charging durability[J]. ACS Nano, 2025, 19(28): 25951-25961. DOI: 10.1021/acsnano. 5c05981. |
| [70] | PHILLIPS G S, STEELE J M A, SAYED F N, et al. Collinear Jahn-Teller ordering induces monoclinic distortion in "defect-free" LiNiO2[J]. Journal of the American Chemical Society, 2025, 147(32): 29042-29051. DOI: 10.1021/jacs.5c07435. |
| [71] | MA H, CAI S J, SONG R, et al. Evolution of interfacial electro-chemo-mechanics in high-energy-density NCM811||Si/C-composite lithium-ion pouch cells[J]. Chemical Engineering Journal, 2025, 511: 162081. DOI: 10.1016/j.cej.2025.162081. |
| [72] | ZHANG J Y, WENG S T, ZHONG C, et al. Worse interference of Fe3+ than Fe2+ on degrading the interphase and performance of LiFePO4||graphite battery[J]. Advanced Materials, 2025, n/a(n/a): e13736. DOI: 10.1002/adma.202513736. |
| [73] | TAN S, XIA K X, et al. Synchronized breathing in anion-derived interphases[J]. ACS Energy Letters, 2025, 10(8): 3746-3754. DOI: 10.1021/acsenergylett.5c01756. |
| [74] | GOBER M, AMAI J, TORRES J R, et al. High spatial resolution neutron imaging of lithium-ion batteries: Correlating microstructure and lithium transport[J]. Journal of Power Sources, 2025, 655: 237765. DOI: 10.1016/j.jpowsour.2025.237765. |
| [75] | JEONG H, et al. Curvature-dependent electrochemo-mechanics of silicon during electrochemical cycling[J]. ACS Energy Letters, 2025, 10(7): 3388-3394. DOI: 10.1021/acsenergylett.5c01043. |
| [76] | WICHMANN L, JIANG S K, THIENENKAMP J H, et al. Origins of lithium inventory reversibility with an alloying functional layer in anode-free lithium metal batteries[J]. Nature Communications, 2025, 16: 7216. DOI: 10.1038/s41467-025-62289-6. |
| [77] | ONEY G, MONACO F, MITRA S, et al. Dead, slow, and overworked graphite: operando X-ray microdiffraction mapping of aged electrodes[J]. Advanced Energy Materials, 2025, 15(38): e02032. DOI: 10.1002/aenm.202502032. |
| [78] | LI G C, ZHANG T L, TANG J Y, et al. Decoding chemo-mechanical failure mechanisms of solid-state lithium metal battery under low stack pressure via optical fiber sensors[J]. Advanced Materials, 2025, 37(30): 2417770. DOI: 10.1002/adma.202417770. |
| [79] | CHEN B, HOPE-GLENN N, WRIGHT A, et al. Mechanistic understanding of lithium-ion adsorption, intercalation, and plating during charging of graphite electrodes[J]. ACS Electrochemistry, 2025, 1(5): 574-587. DOI: 10.1021/acselectrochem.4c00079. |
| [80] | WATANABE T, PARK Y J, YAMAMOTO K, et al. Elucidation of the factors that determine the reaction distribution during charging in graphite electrodes for all-solid-state batteries using in situ nano X-ray tomography and digital volume correlation analysis[J]. ACS Applied Materials & Interfaces, 2025, 17(32): 45704-45712. DOI: 10.1021/acsami.5c08660. |
| [81] | MORINO Y, TAKASE K, KANAZAWA A, et al. In-situ internal observation of silicon composite anode in all-solid-state battery using X-ray CT[J]. ACS Applied Materials & Interfaces, 2025, 17(16): 23786-23794. DOI: 10.1021/acsami.4c20859. |
| [82] | SUN G, WANG H T, LEE C F, et al. Visualization of thermal-induced degradation pathways of high-Ni cathode: A comparative study in solid chloride and liquid electrolytes[J]. Advanced Materials, 2025, e10392. DOI: 10.1002/adma.202510392. |
| [83] | JI T T, ZHANG Y X, TORRES J, et al. Operando neutron imaging-guided gradient design of Li-ion solid conductor for high-mass-loading cathodes[J]. Nature Communications, 2025, 16: 7667. DOI: 10.1038/s41467-025-62518-y. |
| [84] | ZHOU J Y, HUANG Y P, ZHONG J C, et al. Nonambient thermodynamics in solid-state batteries[J]. ACS Energy Letters, 2025, 10(9): 4304-4312. DOI: 10.1021/acsenergylett.5c01704. |
| [85] | WANG S H, LI S W, CHEN X Q, et al. Depth-resolved probing of native solid electrolyte interphase formation and dynamics in Li metal batteries by cryogenic X-ray photoelectron spectroscopy[J]. Journal of the American Chemical Society, 2025, 147(42): 38069-38077. DOI: 10.1021/jacs.5c09519. |
| [86] | SUN Y C, NING Y B, QIANG Z M, et al. Digital-twin-assisted insights into irreversible capacity and activation strategy power high-loading solid-state batteries[J]. Angewandte Chemie International Edition, 2025, 64(36): e202502169. DOI: 10.1002/anie.202502169. |
| [87] | ILIC S, MARTINS M, LIU H Y, et al. An unwanted guest in the electrochemical oxidation of high-voltage Li-ion battery electrolytes: The life of highly reactive protons[J]. Energy & Environmental Science, 2025, 18(17): 8303-8312. DOI: 10.1039/d5ee02403j. |
| [88] | QU H T, ZHANG M T, JI H C, et al. Thermodynamic feedback mechanisms for mitigating polarization in lithium-ion batteries[J]. Angewandte Chemie International Edition, 2025, 64(41): e202514404. DOI: 10.1002/anie.202514404. |
| [89] | SUN N, RONG Q L, WU J, et al. Fully printable integrated multifunctional sensor arrays for intelligent lithium-ion batteries[J]. Nature Communications, 2025, 16: 7361. DOI: 10.1038/s41467-025-62657-2. |
| [90] | POLLOK S, KHOSHKALAM M, GHAFFARI-TABRIZI F, et al. Magnetic microscopy for operando imaging of battery dynamics[J]. Nature Communications, 2025, 16: 8303. DOI: 10.1038/s41467-025-63409-y. |
| [91] | KALYK F, PESCARA L, DRÜSCHLER M, et al. Toward robust ionic conductivity determination of sulfide-based solid electrolytes for solid-state batteries[J]. Advanced Functional Materials, 2025, e09479. DOI: 10.1002/adfm.202509479. |
| [92] | BHARATHRAJ S, NIMMAKAYALA D, ADIGA S P, et al. Accurate estimation of solid-phase diffusivity in natural graphite using a voltage relaxation technique[J]. Journal of Power Sources, 2025, 656: 238009. DOI: 10.1016/j.jpowsour.2025.238009. |
| [93] | LIU Y M, TIAN Y, FU Z Q, et al. THermite reaction-induced thermal runaway of lithium-ion batteries[J]. Advanced Materials, 2025, e10486. DOI: 10.1002/adma.202510486. |
| [94] | SHEN L Y, WANG Z L, XU S J, et al. Harnessing database-supported high-throughput screening for the design of stable interlayers in halide-based all-solid-state batteries[J]. Nature Communications, 2025, 16: 3687. DOI: 10.1038/s41467-025-58522-x. |
| [95] | LI R H, ZHANG H K, ZHANG S Q, et al. Unified affinity paradigm for the rational design of high-efficiency lithium metal electrolytes[J]. Nature Energy, 2025, 10(9): 1155-1165. DOI: 10.1038/s41560-025-01842-5. |
| [96] | GONG X S, LI B, YAO J Y, et al. Edge formation in intermittent slot-die coating for lithium-ion battery electrode[J]. Physics of Fluids, 2025, 37(8): 082103. DOI: 10.1063/5.0279043. |
| [97] | BORSHON I Z, JABBARI V, KINGSTON T A, et al. Deep learning analysis of solid-electrolyte interphase microstructures in lithium-ion batteries[J]. Advanced Materials Interfaces, 2025, e00558. DOI: 10.1002/admi.202500558. |
| [98] | YARI S, CONDE REIS A, PANG Q Q, et al. Performance benchmarking and analysis of lithium-sulfur batteries for next-generation cell design[J]. Nature Communications, 2025, 16: 5473. DOI: 10.1038/s41467-025-60528-4. |
| [99] | CHATTERJEE D, NAIK K G, et al. Alloy anodes: Mechanistic regulation of reaction and transport at solid-solid interfaces[J]. ACS Energy Letters, 2025, 10(9): 4184-4193. DOI: 10.1021/acsenergylett.5c01597. |
| [100] | KAUSTHUBHARAM, AYYASWAMY A, et al. Mechanistic interrogation of Li stripping under dynamic operation in solid-state batteries[J]. ACS Energy Letters, 2025, 10(9): 4212-4220. DOI: 10.1021/acsenergylett.5c01911. |
| [1] | Xinxin ZHANG, Guanjun CEN, Ronghan QIAO, Junfeng HAO, Qiangfu SUN, Bowen ZHENG, Yuhao GU, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xueji HUANG. Reviews of selected 100 recent papers for lithium batteries (June 1, 2025 to July 31, 2025) [J]. Energy Storage Science and Technology, 2025, 14(9): 3229-3248. |
| [2] | Junfeng HAO, Jing ZHU, Guanjun CEN, Ronghan QIAO, Xinxin ZHANG, Qiangfu SUN, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2025 to May 31 2025) [J]. Energy Storage Science and Technology, 2025, 14(7): 2884-2902. |
| [3] | Jingfei CHENG. Internal fault analysis strategy of lithium battery based on isolation forest algorithm [J]. Energy Storage Science and Technology, 2025, 14(7): 2878-2880. |
| [4] | Wenjie ZHANG, Dongsheng REN, Yu WU, Xinyu RUI, Xiang LIU, Xuning FENG, Languang LU. Thermal stability of key materials in Li10GeP12S2-based all-solid-state batteries [J]. Energy Storage Science and Technology, 2025, 14(6): 2193-2199. |
| [5] | Zhangjie XU, Zhengyue SUN, Xinyan ZHANG, Jiliang ZHANG, Yingchao YU, Chuang DONG. FeOOH coating on FeS as high-performance anode materials for Li-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(6): 2232-2239. |
| [6] | Dandan HAN, Wuwei ZHANG, Liang ZHANG, Zongjiang WANG. Design and electrochemical performance of LiMn1-y Fe y PO4/C cathode materials with a core-shell structure [J]. Energy Storage Science and Technology, 2025, 14(6): 2215-2222. |
| [7] | Yingjian CHEN, Shang WU, Yuancheng CAO, Baoshuai DU, Zhenxing WANG, Zhongwen OUYANG, Shun TANG. Application of magnetic separation in the recycling of cathode and anode materials from spent lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1918-1927. |
| [8] | Ruilin HE, Tong ZHANG, Jiachun WU, Chaoyang WANG, Yonghong DENG, Guangzhao ZHANG, Xiaoxiong XU. Design of scaffold materials and their application in lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1758-1775. |
| [9] | Qiangfu SUN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2025 to March 31, 2025) [J]. Energy Storage Science and Technology, 2025, 14(5): 1727-1747. |
| [10] | Liping ZHOU, Deqing ZHOU, Fenghua ZHENG, Qichang PAN, Sijiang HU, Yongjie JIANG, Hongqiang WANG, Qingyu LI. Preparation and application of Si@void@C composite anode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 1115-1122. |
| [11] | Zixin XIAO, Hong ZHANG, Lin XU. Nanowires modulating ion transport and interfaces in solid-state lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 1026-1039. |
| [12] | Xinxin ZHANG, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Qiangfu SUN, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xuejie HUANG. Reviews of 100 selected recent papers on lithium batteries (December 1, 2024 to January 31, 2025) [J]. Energy Storage Science and Technology, 2025, 14(3): 1310-1330. |
| [13] | Boyu LIU, Tengfei WANG, Qing PANG, Kaiyu CHEN, Hongyu WANG. Preparation and electrochemical performance of Mg-Cr co-doped LiNi0.5Mn1.5O4 cathode material [J]. Energy Storage Science and Technology, 2025, 14(3): 1097-1106. |
| [14] | Lishuai ZHANG, Yifei ZHANG, Yiyang MA, Sibo ZHAO, Hongquan LIU, Shengting SHI, Yanjun ZHONG. Research progress on sodium-ion battery cathode materials based on iron-based prussian blue analogues [J]. Energy Storage Science and Technology, 2025, 14(2): 525-543. |
| [15] | Yuxuan JIN, Quan ZHOU, Lin ZHOU, Teng GAO, Zijie LI, Yan WANG, Junlong LU. Research progress of NASICON-type phosphate cathode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(11): 4184-4198. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||