Energy Storage Science and Technology ›› 2019, Vol. 8 ›› Issue (2): 386-398.doi: 10.12028/j.issn.2095-4239.2019.0016
Previous Articles Next Articles
ZHANG Hua, TIAN Feng, QI Wenbin, JIN Zhou, ZHAO Junnian, WU Yida, ZHAN Yuanjie, YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie
Received:
2019-02-20
Revised:
2019-02-22
Online:
2019-03-01
Published:
2019-03-01
CLC Number:
ZHANG Hua, TIAN Feng, QI Wenbin, JIN Zhou, ZHAO Junnian, WU Yida, ZHAN Yuanjie, YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries (Dec.1,2018 to Jan.31,2019)[J]. Energy Storage Science and Technology, 2019, 8(2): 386-398.
[1] TATARA R, KARAYAYLALI P, YU Y, et al. The effect of electrode-electrolyte interface on the electrochemical impedance spectra for positive electrode in Li-ion battery[J]. Journal of the Electrochemical Society, 2018, 166(3):A5090-A5098. [2] TSUKASAKI H, FUKUDA W, MORIMOTO H, et al. Thermal behavior and microstructures of cathodes for liquid electrolyte-based lithium batteries[J]. Scientific Reports, 2018, 8:https://doi.org/10.1038/s41598-018-34017-2. [3] QIAN J, LIU L, YANG J, et al. Electrochemical surface passivation of LiCoO2 particles at ultrahigh voltage and its applications in lithium-based batteries[J]. Nature Communications, 2018, 9:https://doi.org/10.1038/s41467-018-07296-6. [4] YU H, SO Y G, REN Y, et al. Temperature-sensitive structure evolution of lithium-manganese-rich layered oxides for lithium-ion batteries[J]. Journal of the American Chemical Society, 2018, 140(45):15279-15289. [5] DUAN Y, YANG L, ZHANG M J, et al. Insights into Li/Ni ordering and surface reconstruction during synthesis of Ni-rich layered oxides[J]. Journal of Materials Chemistry A, 2019, 7(2):513-519. [6] MUKHERJEE P, FAENZA N V, PEREIRA N, et al. Surface structural and chemical evolution of layered LiNi0.8Co0.15Al0.050O2(NCA) under high voltage and elevated temperature conditions[J]. Chemistry of Materials, 2018, 30(23):8431-8445. [7] MU L, YUAN Q, TIAN C, et al. Propagation topography of redox phase transformations in heterogeneous layered oxide cathode materials[J]. Nature Communications, 2018, 9:https://doi.org/10.1038/s41467-018-05172-x. [8] SHⅡBA H, ZETTSU N, KIDA S, et al. Impact of trace extrinsic defect formation on the local symmetry transition in spinel LiNi0.5Mn1.5O4-systems and their electrochemical characteristics[J]. Journal of Materials Chemistry A, 2018, 6(45):22749-22757. [9] CHEN Y, BEN L, CHEN B, et al. Impact of high valence state cation ti/ta surface doping on the stabilization of spinel LiNi0.5Mn1.5O4 cathode materials:A systematic density functional theory investigation[J]. Advanced Materials Interfaces, 2018, 5(12):https://doi.org/10.1002/admi.201800077. [10] HENDRIKS R, CUNHA D M, SINGH D P, et al. Enhanced lithium transport by control of crystal orientation in spinel LiMn2O4 thin film cathodes[J]. ACS Applied Energy Materials, 2018, 1(12):7046-7051. [11] IDEMOTO Y, TEJIMA F, ISHIDA N, et al. Average, electronic, and local structures of LiMn2-xAlxO4 in charge-discharge process by neutron and synchrotron X-ray[J]. Journal of Power Sources, 2019, 410:38-44. [12] OTTENY F, KOLEK M, BECKING J, et al. Unlocking full discharge capacities of poly(vinylphenothiazine) as battery cathode material by decreasing polymer mobility through cross-linking[J]. Advanced Energy Materials, 2018, 8(33):https://doi.org/10.1002/aenm.201802151. [13] WANG S, LI F, EASLEY A D, et al. Real-time insight into the doping mechanism of redox-active organic radical polymers[J]. Nature Materials, 2019, 18(1):69-75. [14] KIM S H, KIM Y S, BAEK W J, et al. Nanoscale electrical resistance imaging of solid electrolyte interphases in lithium-ion battery anodes[J]. Journal of Power Sources, 2018, 407:1-5. [15] AGHAJAMALI M, XIE H, JAVADI M, et al. Size and surface effects of silicon nanocrystals in graphene aerogel composite anodes for lithium ion batteries[J]. Chemistry of Materials, 2018, 30(21):7782-7792. [16] CAO Y, BENNETT J C, DUNLAP R A, et al. A simple synthesis route for high-capacity SiOx anode materials with tunable oxygen content for lithium-ion batteries[J]. Chemistry of Materials, 2018, 30(21):7418-7422. [17] WANG J, LIAO L, LI Y, et al. Shell-protective secondary silicon nanostructures as pressure-resistant high-volumetric-capacity anodes for lithium-ion batteries[J]. Nano Letters, 2018, 18(11):7060-7065. [18] WEI D, MAO J, ZHENG Z, et al. Achieving a high loading Si anode via employing a triblock copolymer elastomer binder, metal nanowires and a laminated conductive structure[J]. Journal of Materials Chemistry A, 2018, 6(42):20982-20991. [19] BATMAZ R, HASSAN F M, HIGGINS D, et al. Highly durable 3D conductive matrixed silicon anode for lithium-ion batteries[J]. Journal of Power Sources, 2018, 407:84-91. [20] LI J Y, LI G, ZHANG J, et al. Rational design of robust Si/C microspheres for high tap density anode materials[J]. ACS Applied Materials & Interfaces, 2019, 11(4):4057-4064. [21] JUAREZ-ROBLES D, GONZALEZ-MALABET H, L'ANTIGUA M, et al. Elucidating lithium alloying induced degradation evolution in high capacity electrodes[J]. ACS Applied Materials & Interfaces, 2018:doi:10.1021/acsami.8b14242. [22] LEE J H, OH S H, JEONG S Y, et al. Rattle-type porous Sn/C composite fibers with uniformly distributed nanovoids containing metallic Sn nanoparticles for high-performance anode materials in lithium-ion batteries[J]. Nanoscale, 2018, 10(45):21483-21491. [23] NITA C, FULLENWARTH J, MONCONDUIT L, et al. Understanding the Sn loading impact on the performance of mesoporous carbon/sn-based nanocomposites in Li-ion batteries[J]. Chemelectrochem, 2018, 5(21):3249-3257. [24] DUAN H, ZHANG J, CHEN X, et al. Uniform nucleation of lithium in 3d current collectors via bromide intermediates for stable cycling lithium metal batteries[J]. Journal of the American Chemical Society, 2018, 140(51):18051-18057. [25] ADAIR K R, IQBAL M, WANG C, et al. Towards high performance Li metal batteries:Nanoscale surface modification of 3D metal hosts for pre-stored Li metal anodes[J]. Nano Energy, 2018, 54:375-382. [26] LI G, LIU Z, HUANG Q, et al. Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects[J]. Nature Energy, 2018, 3(12):1076-1083. [27] JI K, HAN J, HIRATA A, et al. Lithium intercalation into bilayer graphene[J]. Nature Communications, 2019, 10(1):275-275. [28] ZHAO N, FANG R, HE M H, et al. Cycle stability of lithium/garnet/lithium cells with different intermediate layers[J]. Rare Metals, 2018, 37(6):473-479. [29] SUN Y, ZHAO Y, WANG J, et al. A novel organic "polyurea" thin film for ultralong-life lithium-metal anodes via molecular-layer deposition[J]. Advanced Materials (Deerfield Beach, Fla.), 2019, 31(4):e1806541-e1806541. [30] ZOU P, WANG Y, CHIANG S W, et al. Directing lateral growth of lithium dendrites in micro-compartmented anode arrays for safe lithium metal batteries[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-018-02888-8. [31] SHI P, LI T, ZHANG R, et al. Lithiophilic LiC6 layers on carbon hosts enabling stable Li metal anode in working batteries[J]. Advanced materials (Deerfield Beach, Fla.), 2019:e1807131-e1807131. [32] ASSEGIE A A, CHUNG C C, TSAI M C, et al. Multilayer-graphene-stabilized lithium deposition for anode-Free lithium-metal batteries[J]. Nanoscale, 2019:doi:10.1039/C8NR06980H. [33] CUI J, YAO S, IHSAN-UL-HAQ M, et al. Correlation between Li plating behavior and surface characteristics of carbon matrix toward stable Li metal anodes[J]. Advanced Energy Materials, 2019, 9(1):https://doi.org/10.1002/aenm.201802777. [34] DUAN H, ZHANG J, CHEN X, et al. Uniform nucleation of lithium in 3D current collectors via bromide intermediates for stable cycling lithium metal batteries[J]. Journal of the American Chemical Society, 2018, 140(51):18051-18057. [35] SALVATIERRA R V, LOPEZ-SILVA G A, JALILOV A S, et al. Suppressing Li metal dendrites through a solid li-ion backup layer[J]. Advanced Materials, 2018, 30(50):doi:https://doi.org/10.1038/s41467-018-02888-8. [36] CHANG W, PARK J H, STEINGART D A. Poor man's atomic layer deposition of LiF for additive-free growth of lithium columns[J]. Nano Letters, 2018, 18(11):7066-7074. [37] FAN X, JI X, HAN F, et al. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery[J]. Science Advances, 2018, 4(12):doi:10.1126/sciadv.aau9245. [38] LIN D, LIU Y, LI Y, et al. Fast galvanic lithium corrosion involving a Kirkendall-type mechanism[J]. Nature Chemistry, 2019:https://doi.org/10.1038/s41557-018-0203-8. [39] DIXIT M, REGALA M L, SHEN F, et al. Tortuosity effects in garnet-type Li7La3Zr2O12 solid electrolytes[J]. ACS Applied Materials & Interfaces, 2019, 11(2):2022-2030. [40] ZHOU W, WANG Z, PU Y, et al. Double-layer polymer electrolyte for high-voltage all-solid-state rechargeable batteries[J]. Advanced Materials (Deerfield Beach, Fla.), 2018, e1805574-e1805574. [41] PHILIP M, SULLIVAN P, ZHANG R, et al. Improving cell resistance and cycle life with solvate-coated thiophosphate solid electrolytes in lithium batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(2):2014-2021. [42] XU H, LI Y, ZHOU A, et al. Li3N-modified garnet electrolyte for all-solid-state lithium metal batteries operated at 40 degrees C[J]. Nano Letters, 2018, 18(11):7414-7418. [43] LIM H D, YUE X, XING X, et al. Designing solution chemistries for the low-temperature synthesis of sulfide-based solid electrolytes[J]. Journal of Materials Chemistry A, 2018, 6(17):7370-7374. [44] SWAMY T, PARK R, SHELDON B W, et al. Lithium metal penetration induced by electrodeposition through solid electrolytes:Example in single-crystal Li6La3ZrTaO12 garnet[J]. Journal of the Electrochemical Society, 2018, 165(16):A3648-A3655. [45] CALPA M, ROSERO-NAVARRO N C, Miura A, et al. Electrochemical performance of bulk-type all-solid-state batteries using small-sized Li7P3S11 solid electrolyte prepared by liquid phase as the ionic conductor in the composite cathode[J]. Electrochimica Acta, 2019, 296:473-480. [46] CHOI S, ANN J, DO J, et al. Application of rod-like Li6PS5Cl directly synthesized by a liquid phase process to sheet-type electrodes for all-solid-state lithium batteries[J]. Journal of the Electrochemical Society, 2018, 166(3):A5193-A5200. [47] KRAFT M A, OHNO S, ZINKEVICH T, et al. Inducing high ionic conductivity in the lithium superionic argyrodites Li6+xP(1-x)Ge(x)S(5)l for all-solid-state batterie[J]s. Journal of the American Chemical Society, 2018, 140(47):16330-16339. [48] DAI H, XI K, LIU X, et al. Cationic surfactant based electrolyte additives for uniform lithium deposition via lithiophobic repulsion mechanisms[J]. Journal of the American Chemical Society, 2018, 140(50):17515-17521. [49] YOO D J, YANG S, YUN Y S, et al. Tuning the electron density of aromatic solvent for stable solid-electrolyte-interphase layer in carbonate-based lithium metal batteries[J]. Advanced Energy Materials, 2018, 8(33):https://doi.org/10.1002/aenm.201802365. [50] DOKKO K, WATANABE D, UGATA Y, et al. Direct evidence for li ion hopping conduction in highly concentrated sulfolane-based liquid electrolytes[J]. Journal of Physical Chemistry B, 2018, 122(47):10736-10745. [51] HIEU Q P, LEE H Y, HWANG E H, et al. Non-flammable organic liquid electrolyte for high-safety and high-energy density Li-ion batteries[J]. Journal of Power Sources, 2018, 404:13-19. [52] QIAO Y, HE Y, JIANG K, et al. High-voltage Li-ion full-cells with ultralong term cycle life at elevated temperature[J]. Advanced Energy Materials, 2018, 8(33):https://doi.org/10.1002/aenm.201802322. [53] XU G, WANG X, LI J, et al. Tracing the impact of hybrid functional additives on a high-voltage (5 V-class) SiOx-C/LiNi0.5Mn1.5O4 Li-ion battery system[J]. Chemistry of Materials, 2018, 30(22):8291-8302. [54] ZHANG F, SHEN F, FAN Z Y, et al. Ultrathin Al2O3-coated reduced graphene oxide membrane for stable lithium metal anode[J]. Rare Metals, 2018, 37(6):510-519. [55] ZHANG G, PENG H J, ZHAO C Z, et al. The radical pathway based on a lithium-metal-compatible high-dielectric electrolyte for lithium-sulfur batteries[J]. Angewandte Chemie-International Edition, 2018, 57(51):16732-16736. [56] SUN Y Y, LIU S, HOU Y K, et al. In-situ surface modification to stabilize Ni-rich layered oxide cathode with functional electrolyte[J]. Journal of Power Sources, 2019, 410:115-123. [57] TORNHEIM A, SHARIFI-ASL S, GARCIA J C, et al. Effect of electrolyte composition on rock salt surface degradation in NMC cathodes during high-voltage potentiostatic holds[J]. Nano Energy, 2019, 55:216-225. [58] YUE H, YANG Y, XIAO Y, et al. Boron additive passivated carbonate electrolytes for stable cycling of 5 V lithium-metal batteries[J]. Journal of Materials Chemistry A, 2019, 7(2):594-602. [59] DAI H, XI K, LIU X, et al. Cationic surfactant-based electrolyte additives for uniform lithium deposition via lithiophobic repulsion mechanisms[J]. Journal of the American Chemical Society, 2018, 140(50):17515-17521. [60] OUKASSI S, BAGGETTO L, DUBARRY C, et al. Transparent thin film solid-state lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(1):683-690. [61] LI C, LAN Q, YANG Y, et al. A flexible artificial solid electrolyte interphase formed by DOL oxidation and polymerization for metallic lithium anode[J]. ACS Applied Materials & Interfaces, 2018, doi: [62] ALEXANDER G V, ROSERO-NAVARRO N C, MIURA A, et al. Electrochemical performance of a garnet solid electrolyte based lithium metal battery with interface modification[J]. Journal of Materials Chemistry A, 2018, 6(42):21018-21028. [63] PARK C, LEE S, KIM K, et al. Electrochemical properties of composite cathode using bimodal sized electrolyte for all-solid-state batteries[J]. Journal of the Electrochemical Society, 2019, 166(3):A5318-A5322. [64] RIPHAUS N, STROBL P, STIASZNY B, et al. Slurry-based processing of solid electrolytes:A comparative binder study[J]. Journal of the Electrochemical Society, 2018, 165(16):A3993-A3999. [65] DUAN J, WU W, NOLAN A M, et al. Lithium-graphite paste:An interface compatible anode for solid-state batteries[J]. Advanced Materials (Deerfield Beach, Fla.), 2019:e1807243-e1807243. [66] SANG L, BASSETT K L, CASTRO F C, et al. Understanding the effect of interlayers at the thiophosphate solid electrolyte/lithium interface for all-solid-state Li batteries[J]. Chemistry of Materials, 2018, 30(24):8747-8756. [67] LI X, BANIS M, LUSHINGTON A, et al. A high-energy sulfur cathode in carbonate electrolyte by eliminating polysulfides via solid-phase lithium-sulfur transformation[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-018-06877-9. [68] CHANG J, SHANG J, SUN Y, et al. Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium[J]. Nature Communications, 2018, 9:doi:https://doi.org/10.1038/s41467-018-06879-7. [69] KANG H, KIM H, PARK M J. Sulfur-rich polymers with functional linkers for high-capacity and fast-charging lithium-sulfur batteries[J]. Advanced Energy Materials, 2018, 8(32):doi:https://doi.org/10.1002/aenm.201802423. [70] ZHANG Y, LIU T, ZHANG Q, et al. High-performance all-solid-state lithium-sulfur batteries with sulfur/carbon nano-hybrids in a composite cathode[J]. Journal of Materials Chemistry A, 2018, 6(46):23345-23356. [71] WANG D, ZHANG F, HE P, et al. A versatile halide ester enabling li anode stability and high rate capability of lithium-oxygen batteries[J]. Angewandte Chemie (International ed. in English), 2018:doi:https://doi.org/10.1002/anie.201813009 [72] LEI T, CHEN W, HU Y, et al. A nonflammable and thermotolerant separator suppresses polysulfide dissolution for safe and long-cycle lithium-sulfur batteries[J]. Advanced Energy Materials, 2018, 8(32):doi:https://doi.org/10.1002/aenm.201802441. [73] LEI X, LIU X, MA W, et al. Flexible lithium-air battery in ambient air with an insitu formed gel electrolyte[J]. Angewandte Chemie-International Edition, 2018, 57(49):16131-16135. [74] YAO M, WANG R, ZHAO Z, et al. A flexible all-in-one lithium-sulfur battery[J]. ACS Nano, 2018, 12(12):12503-12511. [75] GAO X, SUN Q, YANG X, et al. Toward a remarkable Li-S battery via 3D printing[J]. Nano Energy, 2019, 56:595-603. [76] TAKEUCHI T, KAGEYAMA H, NAKANISHI K, et al. Improvement of cycle capability of Fe-substituted Li2S-based positive electrode materials by doping with lithium iodide[J]. Journal of the Electrochemical Society, 2018, 166(3):A5231-A5236. [77] CHUNG S H, LAI K Y, MANTHIRAM A. A facile, low-cost hot-pressing process for fabricating lithium-sulfur cells with stable dynamic and static electrochemistry[J]. Advanced Materials, 2018, 30(46):doi:https://doi.org/10.1002/adma.201805571. [78] CHUNG S H, MANTHIRAM A. Designing lithium-sulfur batteries with high-loading cathodes at a lean electrolyte condition[J]. ACS Applied Materials & Interfaces, 2018, 10(50):43749-43759. [79] WANG S, FERNANDEZ C, LIU X, et al. The parameter identification method study of the splice equivalent circuit model for the aerial lithium-ion battery pack[J]. Measurement & Control, 2018, 51(5/6):125-137. [80] CHU H, NOH H, KIM Y J, et al. Achieving three-dimensional lithium sulfide growth in lithium-sulfur batteries using high-donor-number anions[J]. Nature Communications, 2019, 10:https://doi.org/10.1038/s41467-018-07975-4. [81] YANG H, GUO C, CHEN J, et al. An intrinsic flame-retardant organic electrolyte for safe lithium-sulfur batteries[J]. Angewandte Chemie-International Edition, 2019, 58(3):791-795. [82] BESSETTE S, PAOLELLA A, KIM C, et al. Nanoscale lithium quantification in LixNiyCowMnzO2 as cathode for rechargeable batteries[J]. Scientific Reports, 2018, 8:doi:https://doi.org/10.1038/s41598-018-33608-3. [83] PARK S Y, BAEK W J, LEE S Y, et al. Probing electrical degradation of cathode materials for lithium-ion batteries with nanoscale resolution[J]. Nano Energy, 2018, 49:1-6. [84] SCHILLING A, GUEMBEL P, MOELLER M, et al. X-ray based visualization of the electrolyte filling process of lithium ion batteries[J]. Journal of the Electrochemical Society, 2018, 166(3):A5163-A5167. [85] JIN Y, ZHOU L, YU J, et al. In operando plasmonic monitoring of electrochemical evolution of lithium metal[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(44):11168-11173. [86] APPIAH W A, PARK J, BYUN S, et al. A coupled chemo-mechanical model to study the effects of adhesive strength on the electrochemical performance of silicon electrodes for advanced lithium ion batteries[J]. Journal of Power Sources, 2018, 407:153-161. [87] NARA H, MUKOYAMA D, SHIMIZU R, et al. Systematic analysis of interfacial resistance between the cathode layer and the current collector in lithium-ion batteries by electrochemical impedance spectroscopy[J]. Journal of Power Sources, 2019, 409:139-147. [88] SHIRAKI S, SHIRASAWA T, SUZUKI T, et al. Atomically well-ordered structure at solid electrolyte and electrode interface reduces the interfacial resistance[J]. ACS Applied Materials & Interfaces, 2018, 10(48):41732-41737. [89] MARZOUK A, PONCE V, BENITEZ L, et al. Unveiling the first nucleation and growth steps of inorganic solid electrolyte interphase components[J]. Journal of Physical Chemistry C, 2018, 122(45):25858-25868. [90] SCHULZ N, HAUSBRAND R, DIMESSO L, et al. XPS-surface analysis of sei layers on li-ion cathodes:part i. investigation of initial surface chemistry[J]. Journal of the Electrochemical Society, 2018, 165(5):A819-A832. [91] ALEMU T, PRADANAWATI S A, CHANG S C, et al. In operando measurements of kinetics of solid electrolyte interphase formation in lithium-ion batteries[J]. Journal of Power Sources, 2018, 400:426-433. [92] HUANG X, ELLISON N. Fabricating a high performance composite separator with a small thickness for lithium ion batteries[J]. Composites Science and Technology, 2018, 168:346-352. [93] CHANG D, OH K, KIM S J, et al. Super-ionic conduction in solid-state Li7P3S11-type sulfide electrolytes[J]. Chemistry of Materials, 2018, 30(24):8764-8770. [94] HUANG W, BOYLE D T, LI Y, et al. Nanostructural and electrochemical evolution of the solid-electrolyte interphase on cuo nanowires revealed by cryogenic electron microscopy and impedance spectroscopy[J]. ACS Nano, 2019, 13(1):737-744. [95] KIM P J, Pol V G. Surface functionalization of a conventional polypropylene separator with an aluminum nitride layer towards ultra-stable and high-rate lithium metal anodes[J]. ACS Applied Materials & Interfaces, 2019, 11(4):3917-3924. [96] ZHANG T, MA Y, HUANG B, et al. Two-dimensional penta-bn2 with high specific capacity for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(6):6104-6110. [97] DAS D, CHANDRASEKARAN A, VENKATRAM S, et al. Effect of crystallinity on Li adsorption in polyethylene oxide[J]. Chemistry of Materials, 2018, 30(24):8804-8810. [98] RIKKA V R, SAHU S R, CHATTERJEE A, et al. In situ/ex situ investigations on the formation of the mosaic solid electrolyte interface layer on graphite anode for lithium-ion batteries[J]. Journal of Physical Chemistry C, 2018, 122(50):28717-28726. [99] LEE H, LIM H S, REN X, et al. Detrimental effects of chemical crossover from the lithium anode to cathode in rechargeable lithium metal batteries[J]. ACS Energy Letters, 2018, 3(12):2921-2930. [100] XIE Y, GAO H, GIM J, et al. Identifying active sites for parasitic reactions at the cathode electrolyte interface[J]. The Journal of Physical Chemistry Letters, 2019, 10(3):589-594. |
[1] | Deshuai LIU, Huiqin ZHU, Ruihao SUN, Meng LI, Wenhao GONG, Xiaohui LI, Weiwei QIAN. Synergistic dual-additive boost cyclability of sodium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1858-1865. |
[2] | Yingjian CHEN, Shang WU, Yuancheng CAO, Baoshuai DU, Zhenxing WANG, Zhongwen OUYANG, Shun TANG. Application of magnetic separation in the recycling of cathode and anode materials from spent lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1918-1927. |
[3] | Xiaoru XU, Jianzhen OU, Jiawei LIU, Zhicong CHEN, Hao YE, Yinglong LIU, Yingli LIU, Zeyu LIN, Jingjing LIU, Junhui JIAN, Xu LUO, Jingmin FAN, Chao WANG, Libin LEI, Bo LIANG. Direct ammonia tubular fuel cell with an embedded microchannel ceramic cracking reactor [J]. Energy Storage Science and Technology, 2025, 14(5): 1818-1828. |
[4] | Ruilin HE, Tong ZHANG, Jiachun WU, Chaoyang WANG, Yonghong DENG, Guangzhao ZHANG, Xiaoxiong XU. Design of scaffold materials and their application in lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1758-1775. |
[5] | Qiangfu SUN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2025 to March 31, 2025) [J]. Energy Storage Science and Technology, 2025, 14(5): 1727-1747. |
[6] | Chenglong JIN, Mengting SUN, Qingfei MENG, Shuwei ZHANG, Zhou ZHOU, Yuyang QI. Design and application of wide-temperature electrolytes for Li/Cr8O21 batteries [J]. Energy Storage Science and Technology, 2025, 14(4): 1369-1376. |
[7] | Jinming YUE, Yuanli LIU, Yixia CHEN, Xiqian YU, Hong LI. Study on the separation conditions of lithium ion battery electrolyte by GC-MS detection [J]. Energy Storage Science and Technology, 2025, 14(4): 1564-1573. |
[8] | Xingqun LIAO, Rui YANG, Lijuan YU, Dalin HU, Feng XIAO, Jing HU, Zhouguang LU. 2,6-pyridine dimethyl acetonitrile: A multifunctional electrolyte additive for stabilizing high-voltage LiCoO2 [J]. Energy Storage Science and Technology, 2025, 14(4): 1331-1339. |
[9] | Dequan HUANG, Tao WEI, Guangda YIN, Gang WEN, Jue HOU, Yi LIANG. Research on the application of siloxane solvent in high-voltage lithium metal batteries and electrochemical performance [J]. Energy Storage Science and Technology, 2025, 14(4): 1340-1351. |
[10] | Tao YE, Yijun WANG, Zilong TANG, Guoliang PAN. Investigation of capacity fading in vanadium flow battery electrolytes and recovery via oxalic acid [J]. Energy Storage Science and Technology, 2025, 14(3): 1177-1186. |
[11] | Shuaijing JI, Junwei WANG, Baoshuai DU, Li XU, Ping LOU, Minyuan GUAN, Shun TAN, Shijie CHENG, Yuancheng CAO. Improvement paths for the stability and safety of LiFe x Mn1–x PO4 (0 < x < 1) batteries: From failure mechanisms to comprehensive optimization strategies [J]. Energy Storage Science and Technology, 2025, 14(3): 965-983. |
[12] | Nan LI, Jing MA, Tingxiu HUANG, Yixing SHEN, Min SHEN, Yiyi JIANG, Tao HONG, Guoqiang MA, Zifeng MA. Research progress on nitrile compounds in high potential electrolytes [J]. Energy Storage Science and Technology, 2025, 14(3): 997-1009. |
[13] | Chencheng XU, Zhan WANG, Shuang LI, Jiangmin JIANG, Zhicheng JU. Research progress and engineering application prospects of prelithiation technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 930-946. |
[14] | Gongxun LU, Huadong YUAN, Jianmin LUO, Yao WANG, Yujing LIU, Peng SHI, Shihui ZOU, Guangmin ZHOU, Xinyong TAO, Jianwei NAI. Surface pre-treatment strategies for lithium metal: Advancement and perspective [J]. Energy Storage Science and Technology, 2025, 14(3): 947-964. |
[15] | Liping ZHOU, Deqing ZHOU, Fenghua ZHENG, Qichang PAN, Sijiang HU, Yongjie JIANG, Hongqiang WANG, Qingyu LI. Preparation and application of Si@void@C composite anode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 1115-1122. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||