Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (1): 217-238.doi: 10.19799/j.cnki.2095-4239.2019.0203
Previous Articles Next Articles
YU Yifan1,2, GU Yuping1,2, LI Chilin1,2()
Received:
2019-09-10
Revised:
2019-09-26
Online:
2020-01-05
Published:
2019-09-23
CLC Number:
YU Yifan, GU Yuping, LI Chilin. Progress on fluoride ion shuttle batteries[J]. Energy Storage Science and Technology, 2020, 9(1): 217-238.
1 | DAVIS V K, BATES C M, OMICHI K, et al. Room-temperature cycling of metal fluoride electrodes: Liquid electrolytes for high-energy fluoride ion cells[J]. Science, 2018, 362(6419): 1144-1148. |
2 | YANG Q, LI C, Li metal batteries and solid state batteries benefiting from halogen-based strategies[J]. Energy Storage Materials, 2018, 14: 100-117. |
3 | SAHA P, DATTA M K, VELIKOKHATNYI O I, et al. Rechargeable magnesium battery: Current status and key challenges for the future [J]. Progress in Materials Science, 2014, 66: 1-86. |
4 | RAHMAN M A, WANG X J, WEN C E. High energy density metal-air batteries: A review[J]. Journal of the Electrochemical Society, 2013, 160(10): A1759-A1771. |
5 | HOPKINS B J, SHAO-HORN Y, HART D P. Suppressing corrosion in primary aluminum-air batteries via oil displacement[J]. Science, 2018, 362(6415): 658-661. |
6 | REDDY M A, FICHTNER M. Batteries based on fluoride shuttle[J]. Journal of Materials Chemistry, 2011, 21(43): 17059-17062. |
7 | RONGEAT C, REDDY M A, WITTER R, et al. Solid electrolytes for fluoride ion batteries: Ionic conductivity in polycrystalline tysonite-type fluorides[J]. ACS Applied Materials & Interfaces, 2014, 6(3): 2103-2110. |
8 | DIEUDONNE B, CHABLE J, MAUVY F, et al. Exploring the Sm1-xCaxF3-x tysonite solid solution as a solid-state electrolyte: Relationships between structural features and F- ionic conductivity[J]. Journal of Physical Chemistry C, 2015, 119(45): 25170-25179. |
9 | CHABLE J, DIEUDONNE B, BODY M, et al. Fluoride solid electrolytes: investigation of the tysonite-type solid solutions La1-xBaxF3-x (x < 0. 15)[J]. Dalton Transactions, 2015, 44(45): 19625-19635. |
10 | BHATIA H, DUC THO T, POHL A H, et al. Conductivity optimization of tysonite-type La1-xBaxF3-x solid electrolytes for advanced fluoride ion battery[J]. ACS Applied Materials & Interfaces, 2017, 9(28): 23707-23715. |
11 | RONGEAT C, REDDY M A, WITTER R, et al. Nanostructured fluorite-type fluorides as electrolytes for fluoride ion batteries[J]. Journal of Physical Chemistry C, 2013, 117(10): 4943-4950. |
12 | MOHAMMAD I, CHABLE J, WITTER R, et al. Synthesis of fast fluoride-ion-conductive fluorite-type Ba1-xSbxF2+x (0.1 ≤ x ≤ 0.4): a potential solid electrolyte for fluoride-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(20): 17249-17256. |
13 | MOHAMMAD I, WITTER R, FICHTNER M, et al. Room-temperature, rechargeable solid-state fluoride-ion batteries[J]. ACS Applied Energy Materials, 2018, 1(9): 4766-4775. |
14 | MOHAMMAD I, WITTER R, FICHTNER M, et al. Introducing interlayer electrolytes: Toward room-temperature high-potential solid-state rechargeable fluoride ion batteries[J]. ACS Applied Energy Materials, 2019, 2(2): 1553-1562. |
15 | GSCHWIND F, ZAO-KARGER Z, FICHTNER M. A fluoride-doped PEG matrix as an electrolyte for anion transportation in a room-temperature fluoride ion battery[J]. Journal of Materials Chemistry A, 2014, 2(5): 1214-1218. |
16 | GSCHWIND F, BASTIEN J. Parametric investigation of room-temperature fluoride-ion batteries: Assessment of electrolytes, Mg-based anodes, and BiF3-cathodes[J]. Journal of Materials Chemistry A, 2015, 3(10): 5628-5634. |
17 | KONISHI H, MINATO T, ABE T, et al. Electrochemical performance of a bismuth fluoride electrode in a reserve-type fluoride shuttle battery[J]. Journal of the Electrochemical Society, 2017, 164(14): A3702-A3708. |
18 | KUCUK A C, MINATO T, YAMANAKA T, et al. Effects of LiBOB on salt solubility and BiF3 electrode electrochemical properties in fluoride shuttle batteries[J]. Journal of Materials Chemistry A, 2019, 7(14): 8559-8567. |
19 | KONISHI H, MINATO T, ABE T, et al. Influence of electrolyte composition on the electrochemical reaction mechanism of bismuth fluoride electrode in fluoride shuttle battery[J]. The Journal of Physical Chemistry C, 2019, 123(16): 10246-10252. |
20 | IOKAZAKI K UCHIMOTO Y, ABE T, et al. Charge-discharge behavior of bismuth in a liquid electrolyte for rechargeable batteries based on a fluoride shuttle[J]. ACS Energy Letters, 2017, 2(6): 1460-1464. |
21 | GRENIER A, GPORRAS-GUTIERREZ A GROULT H, et al. Electrochemical reactions in fluoride-ion batteries: Mechanistic insights from pair distribution function analysis[J]. Journal of Materials Chemistry A, 2017, 5(30): 15700-15705. |
22 | THIEU D T, HAMMAD M, BHATIA H, et al. CuF2 as reversible cathode for fluoride ion batteries[J]. Advanced Functional Materials, 2017, 27(31): doi:10.1002/adfm.20 1701051. |
23 | NOWROOZI M A, WISSEL K, ROHRER J, et al. LaSrMnO4: Reversible electrochemical intercalation of fluoride ions in the context of fluoride ion batteries[J]. Chemistry of Materials, 2017, 29(8): 3441-3453. |
24 | KONISHI H, MINATO T, ABE T, et al. Improvement of cycling performance in bismuth fluoride electrodes by controlling electrolyte composition in fluoride shuttle batteries[J]. Journal of Applied Electrochemistry, 2018, 48(11): 1205-1211. |
25 | KONISHI H, MINATO T, ABE T, et al. Electrochemical properties of lead fluoride electrode in fluoride shuttle battery[J]. Journal of Electroanalytical Chemistry, 2018, 826: 60-64. |
26 | GRENIER A, PORRAS-GUTIERREZ A G, BODY M, et al. Solid fluoride electrolytes and their composite with carbon: Issues and challenges for rechargeable solid state fluoride-ion batteries[J]. Journal of Physical Chemistry C, 2017, 121(45): 24962-24970. |
27 | RONGEAT C, REDDY M A, DIEMANT T, et al. Development of new anode composite materials for fluoride ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(48): 20861-20872. |
28 | GSCHWIND F, RODRIGUEZ-GARCIA G, SANDBECK D J S, et al. Fluoride ion batteries: Theoretical performance, safety, toxicity, and a combinatorial screening of new electrodes[J]. Journal of Fluorine Chemistry, 2016, 182: 76-90. |
29 | HU J, ZHANG Y, CAO D, et al. Dehydrating bronze iron fluoride as high capacity conversion cathode for lithium batteries[J]. Journal of Materials Chemistry A, 2016, 4(41): 16166-16174. |
30 | NOWROOZI M A, CLEMENS O. Insights on the behavior of conversion-based anode materials for fluoride ion batteries by testing against an intercalation-based reference cathode[J]. ACS Applied Energy Materials, 2018, 1(11): 6626-6637. |
31 | CLEMENS O, RONGEAT C, REDDY M A, et al. Electrochemical fluorination of perovskite type BaFeO2.5[J]. Dalton Transactions, 2014, 43(42): 15771-15778. |
32 | NOWROOZI M A, IVLEV S, ROHRER J, et al. La2CoO4: A new intercalation based cathode material for fluoride ion batteries with improved cycling stability[J]. Journal of Materials Chemistry A, 2018, 6(11): 4658-4669. |
33 | LI C, CHEN K, ZHOU X, et al. Electrochemically driven conversion reaction in fluoride electrodes for energy storage devices[J]. NPJ Computational Materials, 2018, 4(1): doi:http://doi.org/10.1038/s41524-018-0079-6. |
[1] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[2] | Suting WENG, Zepeng LIU, Gaojing YANG, Simeng ZHANG, Xiao ZHANG, Qiu FANG, Yejing LI, Zhaoxiang WANG, Xuefeng WANG, Liquan CHEN. Cryogenic electron microscopy (cryo-EM) characterizing beam-sensitive materials in lithium metal batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 760-780. |
[3] | Shiwei DENG, Jianfang WU, Tuo SHI. Defect chemistry analysis of solid electrolytes: Point defects in grain bulk and grain boundary space-charge layer [J]. Energy Storage Science and Technology, 2022, 11(3): 939-947. |
[4] | Dangling LIU, Shimin WANG, Zhihui GAO, Lufu XU, Shubiao XIA, Hong GUO. Properties of three-dimensional NZSPO/PAN-[PEO-NATFST] sodium-battery-composite solid electrolyte [J]. Energy Storage Science and Technology, 2021, 10(3): 931-937. |
[5] | Shangsen CHI, Yidong JIANG, Qingrong WANG, Ziwei YE, Kai YU, Jun MA, Jun JIN, Jun WANG, Chaoyang WANG, Zhaoyin WEN, Yonghong DENG. The liquid electrolyte modified interface between garnet-type solid-state electrolyte and lithium anode [J]. Energy Storage Science and Technology, 2021, 10(3): 914-924. |
[6] | Saisai ZHANG, Hailei ZHAO. Electrode/electrolyte interfaces in Li7La3Zr2O12 garnet-based solid-state lithium metal battery: Challenges and progress [J]. Energy Storage Science and Technology, 2021, 10(3): 863-871. |
[7] | Yanming CUI, Zhihua ZHANG, Yuanqiao HUANG, Jiu LIN, Xiayin YAO, Xiaoxiong XU. Prototype all-solid-state battery electrodes preparation and assembly technology [J]. Energy Storage Science and Technology, 2021, 10(3): 836-847. |
[8] | Peng ZHANG, Xingqiang LAI, Junrong SHEN, Donghai ZHANG, Yongheng YAN, Rui ZHANG, Jun SHENG, Kangwei DAI. Research and industrialization progress of solid-state lithium battery [J]. Energy Storage Science and Technology, 2021, 10(3): 896-904. |
[9] | Xi LI, Yajuan YU, Zhiqi ZHANG, Lei WANG, Kai HUANG. Advance and patent analysis of solid electrolyte in solid-state lithium batteries [J]. Energy Storage Science and Technology, 2021, 10(1): 77-86. |
[10] | Manman JIA, Long ZHANG. Recent development on sulfide solid electrolytes for solid-state sodium batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1266-1283. |
[11] | Ge SUN, Zhixuan WEI, Xinyuan ZHANG, Nan CHEN, Gang CHEN, Fei DU. Recent progress of sodium-based inorganic solid electrolytes [J]. Energy Storage Science and Technology, 2020, 9(5): 1251-1265. |
[12] | Peng GAO, Shan ZHANG, Liubin BEN, Wenwu ZHAO, Zhongzhu LIU, Rogerio RIBAS, Yongming ZHU, Xuejie HUANG. Application of niobium in lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1443-1453. |
[13] | Shu GAO, Min ZHOU, Jing HAN, Cong GUO, Yuan TAN, Kai JIANG, Kangli WANG. Progress on polymer electrolyte in sodium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1300-1308. |
[14] | Jie WU, Xiaobiao JIANG, Yang YANG, Yongmin WU, Lei ZHU, Weiping TANG. Progress of NASICON-structured Li1+xAlxTi2-x(PO4)3 (0 ≤x≤ 0.5) solid electrolyte [J]. Energy Storage Science and Technology, 2020, 9(5): 1472-1488. |
[15] | Jing YANG, Gaozhan LIU, Lin SHEN, Xiayin YAO. Research progress on NASICON-structured sodium solid electrolytes and their derived solid state sodium batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1284-1299. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||