Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (5): 1627-1633.doi: 10.19799/j.cnki.2095-4239.2021.0642
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Chunjing LIN(), Danhua LI, Haoran WEN, Tianyi MA, Hong CHANG, Peixiang CHANG, Haiqiang LI, Shiqiang LIU()
Received:
2021-12-03
Revised:
2021-12-16
Online:
2022-05-05
Published:
2022-05-07
Contact:
Shiqiang LIU
E-mail:linchunjing@catarc.ac.cn;liushiqiang@catarc.ac.cn
CLC Number:
Chunjing LIN, Danhua LI, Haoran WEN, Tianyi MA, Hong CHANG, Peixiang CHANG, Haiqiang LI, Shiqiang LIU. Research on swelling force characteristics of power battery during charging[J]. Energy Storage Science and Technology, 2022, 11(5): 1627-1633.
Fig. 2
Changing characteristics of swelling force of power battery: (a) Power battery charging capacity and swelling force curve at 0.05 C and different temperatures; (b) Power battery voltage, temperature, swelling force and swelling force change rate at 5 ℃ and 0.05 C as a function of charging capacity; (c) The voltage, temperature, swelling force and swelling force change rate of power battery at 25 ℃ and 0.05 C vary with the change of charging capacity; (d) The voltage, temperature, swelling force, and swelling force change rate of power battery at 45 ℃ and 0.05 C varies with the rate of change Change graph of charging capacity"
Table 2
The SOC data table corresponding to the swelling force and the change stage of the power battery at 0.05 C and different temperatures"
温度/℃ | 充电末端 膨胀力/N | 充电末端 容量/Ah | 平均膨胀力 变化速率/(N/Ah) | 阶段Ⅰ (快速增加)SOC/% | 阶段Ⅱ (缓慢增加)SOC/% | 阶段Ⅲ (快速增加)SOC/% | 阶段Ⅳ (缓慢波动)SOC/% |
---|---|---|---|---|---|---|---|
5 | 6477.8 | 154.04 | 42.1 | 0~24.7 | 24.7~57.4 | 57.4~79.5 | 79.5~100 |
25 | 4214.0 | 153.9 | 27.4 | 0~26.6 | 26.6~55.4 | 55.4~80.0 | 80.0~100 |
45 | 5292.0 | 154.4 | 34.3 | 0~27.5 | 27.5~55.8 | 55.8~78.9 | 78.9~100 |
1 | LIU W, OH P, LIU X, et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries[J]. Angewandte Chemie International Edition, 2015, 54(15): 4440-4457. |
2 | 王灿, 马盼, 祝国梁, 等. 锂离子电池长寿命石墨电极研究现状与展望[J]. 储能科学与技术, 2021, 10(1): 59-67. |
WANG C, MA P, ZHU G L, et al. LIB long life graphite electrode:State-of-art development and perspective[J]. Energy Storage Science and Technology, 2021, 10(1): 59-67. | |
3 | XIAO B, SUN X. Surface and subsurface reactions of lithium transition metal oxide cathode materials: An overview of the fundamental origins and remedying approaches[J]. Advanced Energy Materials, 2018, 8(29): 1802057. |
4 | 尹涛, 郑莉莉, 贾隆舟, 等. 锂离子电池浮充电研究综述[J]. 储能科学与技术, 2021, 10(1): 310-318. |
YIN T, ZHENG L L, JIA L Z, et al. Overview of research on float charging for lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(1): 310-318. | |
5 | 闫雅婧. 锂离子电池用固态电解质的研究现状与展望[J]. 无机盐工业, 2020, 52(7): 22-25. |
YAN Y J. Research status and prospect of solid electrolyte for lithium ion batteries[J]. Inorganic Chemicals Industry, 2020, 52(7): 22-25. | |
6 | LI J Q, SUN D N, JIN X, et al. Lithium-ion battery overcharging thermal characteristics analysis and an impedance-based electro-thermal coupled model simulation[J]. Applied Energy, 2019, 254: 113574.1-113574.12. |
7 | XU P P, LI J Q, LEI N, et al. An experimental study on the mechanical characteristics of li-ion battery during overcharge-induced thermal runaway[J]. International Journal of Energy Research, 2021, 45(14): doi: 10.1002/er.7072. |
8 | AURBACH D, MARKOVSKY B, WEISSMAN I, et al. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries[J]. Electrochimica Acta, 1999, 45(1/2): 67-86. |
9 | MUKHOPADHYAY A, SHELDON B W. Deformation and stress in electrode materials for Li-ion batteries[J]. Progress in Materials Science, 2014, 63(6): 58-116. |
10 | CANNARELLA J, ARNOLD C B. State of health and charge measurements in lithium-ion batteries using mechanical stress[J]. Journal of Power Sources, 2014, 269(10): 7-14. |
11 | GALUSHKIN N Е, YAZVINSKAYA, GALUSHKIN D. Mechanism of gases generation during lithium-ion batteries cycling[J]. Journal of The Electrochemical Society, 2019, 166(6): A897-A908. |
12 | 梁浩斌, 杜建华, 郝鑫, 等. 锂电池膨胀形成机制研究现状[J]. 储能科学与技术, 2021, 10(2): 647-657. |
LIANG H B, DU J H, H X, et al. A review of current research on the formation mechanism of lithium batteries[J]. Energy Storage Science and Technology, 2021, 10(2): 647-657. | |
13 | LOULI A J, ELLIS L D, DAHN J R. Operando pressure measurements reveal solid electrolyte interphase growth to rank Li-ion cell performance[J]. Joule, 2019, 3(3): 745-761. |
14 | 徐成善, 卢兰光, 欧阳明高, 等. 车用动力电池“呼吸效应”的研究[J]. 汽车工程, 2018, 40(12): 41-62. |
XU C S, LU L G, OUYANG M G, et al. A study on' breathing effect'of traction batteries for electric vehicles[J]. Automotive Engineering, 2018, 40(12): 41-62. | |
15 | LOULI A J, ELLIS L D, DAHN J R. Operando pressure measurements reveal solid electrolyte interphase growth to rank Li-ion cell performance[J]. Joule, 2019, 3(3): 745-761. |
16 | FU R, MENG X, CHOE S Y. Modeling, validation and analysis of mechanical stress generation and dimension changes of a pouch type high power Li-ion battery[J]. Journal of Power Sources, 2013, 224(15): 211-224. |
17 | OH K Y, SIEGEL J B, SECONDO L, et al. Rate dependence of swelling in lithium-ion cells[J]. Journal of Power Sources, 2014, 267:197-202. |
18 | LI R, REN D, GUO D, et al. Volume deformation of large-format lithium ion batteries under different degradation paths[J]. Journal of The Electrochemical Society, 2019, 166(16): A4106-A4114. |
19 | BAUER M, WACHTLER M, STOEWE H, et al. Understanding the dilation and dilation relaxation behavior of graphite-based lithium-ion cells[J]. Journal of Power Sources, 2016, 317(15): 93-102. |
20 | DAHN J R. Phase diagram of LixC6[J]. Physical Review B, Condensed Matter, 1991, 44(17): 9170-9177. |
21 | BILLAUD D, LELAURAIN M, WILLMANN P, et al. Revisited structures of dense and dilute stage ii lithium-graphite intercalation compounds[J]. Journal of Physics & Chemistry of Solids, 1996, 57(6/7/8): 775-781. |
22 | OHZUKU T, MATOBA N, SAWAI K. Direct evidence on anomalous swelling of graphite-negative electrodes on first charge by dilatometry[J]. Journal of Power Sources, 2001, s97/98(7): 73-77. |
[1] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[2] | Qingwei ZHU, Xiaoli YU, Qichao WU, Yidan XU, Fenfang CHEN, Rui HUANG. Semi-empirical degradation model of lithium-ion battery with high energy density [J]. Energy Storage Science and Technology, 2022, 11(7): 2324-2331. |
[3] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[4] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[5] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[6] | WANG Can, MA Pan, ZHU Guoliang, WEI Shuimiao, YANG Zhilu, ZHANG Zhiyu. Effect of lithium acrylic-coated nature graphite on its electrochemical properties [J]. Energy Storage Science and Technology, 2022, 11(6): 1706-1714. |
[7] | LIU Hangxin, CHEN Xiantao, SUN Qiang, ZHAO Chenxi. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment [J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. |
[8] | WANG Yuzuo, DENG Miao, WANG Jin, YANG Bin, LU Yinli, JIN Ge, RUAN Dianbo. Study on the effects of carbonization temperature on lithium-storage kinetics for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(6): 1715-1724. |
[9] | YU Chunhui, HE Ziying, ZHANG Chenxi, LIN Xianqing, XIAO Zhexi, WEI Fei. The analyses and suppressing strategies of silicon anode with the electrolyte [J]. Energy Storage Science and Technology, 2022, 11(6): 1749-1759. |
[10] | Jun WANG, Lin RUAN, Yanliang QIU. Research progress on rapid heating methods for lithium-ion battery in low-temperature [J]. Energy Storage Science and Technology, 2022, 11(5): 1563-1574. |
[11] | Guangyu CHENG, Xinwei LIU, Yueni MEI, Honghui GU, Cheng YANG, Ke WANG. Capacity fading analysis of lithium-ion battery after high temperature storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1339-1349. |
[12] | Yanwen DAI, Aiqing YU. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation [J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649. |
[13] | Qiaomin KE, Jian GUO, Yiwei WANG, Wenjiong CAO, Man CHEN, Fangming JIANG. The effect of liquid-cooled thermal management on thermal runaway of power battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1634-1640. |
[14] | Zhenkai HU, Bo LEI, Yongqi LI, Youjie SHI, Qikai LEI, Zhipeng HE. Comparative study on safety test and evaluation methods of lithium-ion batteries for energy storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1650-1656. |
[15] | Chunlin YU, Xudong CHEN, Toshio MIYAGAWA, Hui SUN, Xingwang ZHANG, Lige TONG. Precursor with special structure for improving the performance of the ternary cathode material of Li-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 1000-1007. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||