Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (9): 2917-2926.doi: 10.19799/j.cnki.2095-4239.2023.0306
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Jiwei LI1,2,3,4(), Ruihan LIU1, Taolin LU2,3,4,5(), Long PAN1, Changjun MA1, Qingbo LI2, Zhiyun ZHAO1(), Wen YANG1, Jingying XIE2,3,4()
Received:
2023-05-04
Revised:
2023-05-22
Online:
2023-09-05
Published:
2023-09-16
Contact:
Taolin LU, Zhiyun ZHAO, Jingying XIE
E-mail:lijiweimm@163.com;a357439607@163.com;zyzhao@ecust.edu.cn;xiejingying2007@126.com
CLC Number:
Jiwei LI, Ruihan LIU, Taolin LU, Long PAN, Changjun MA, Qingbo LI, Zhiyun ZHAO, Wen YANG, Jingying XIE. Early fault diagnosis of lithium-ion battery packs based on improved local outlier detection and standard deviation method[J]. Energy Storage Science and Technology, 2023, 12(9): 2917-2926.
1 | HU X S, ZHANG K, LIU K L, et al. Advanced fault diagnosis for lithium-ion battery systems: A review of fault mechanisms, fault features, and diagnosis procedures[J]. IEEE Industrial Electronics Magazine, 2020, 14(3): 65-91. |
2 | WANG Q S, WANG Z P, ZHANG L, et al. A novel consistency evaluation method for series-connected battery systems based on real-world operation data[J]. IEEE Transactions on Transportation Electrification, 2021, 7(2): 437-451. |
3 | TIAN J P, XIONG R, SHEN W X, et al. Electrode ageing estimation and open circuit voltage reconstruction for lithium ion batteries[J]. Energy Storage Materials, 2021, 37: 283-295. |
4 | ZHANG K, HU X S, LIU Y G, et al. Multi-fault detection and isolation for lithium-ion battery systems[J]. IEEE Transactions on Power Electronics, 2022, 37(1): 971-989. |
5 | FENG F, HU X S, HU L, et al. Propagation mechanisms and diagnosis of parameter inconsistency within Li-Ion battery packs[J]. Renewable and Sustainable Energy Reviews, 2019, 112: 102-113. |
6 | LIU L S, FENG X N, RAHE C, et al. Internal short circuit evaluation and corresponding failure mode analysis for lithium-ion batteries[J]. Journal of Energy Chemistry, 2021, 61: 269-280. |
7 | CHE Y H, DENG Z W, LI P H, et al. State of health prognostics for series battery packs: A universal deep learning method[J]. Energy, 2022, 238: 121857. |
8 | CHEN Z H, XU K, WEI J W, et al. Voltage fault detection for lithium-ion battery pack using local outlier factor[J]. Measurement, 2019, 146: 544-556. |
9 | LIU Z T, HE H W. Sensor fault detection and isolation for a lithium-ion battery pack in electric vehicles using adaptive extended Kalman filter[J]. Applied Energy, 2017, 185: 2033-2044. |
10 | OUYANG M G, ZHANG M X, FENG X N, et al. Internal short circuit detection for battery pack using equivalent parameter and consistency method[J]. Journal of Power Sources, 2015, 294: 272-283. |
11 | XIONG R, YU Q Q, SHEN W X, et al. A sensor fault diagnosis method for a lithium-ion battery pack in electric vehicles[J]. IEEE Transactions on Power Electronics, 2019, 34(10): 9709-9718. |
12 | GAO W K, ZHENG Y J, OUYANG M G, et al. Micro-short-circuit diagnosis for series-connected lithium-ion battery packs using mean-difference model[J]. IEEE Transactions on Industrial Electronics, 2019, 66(3): 2132-2142. |
13 | GAO Z W, CECATI C, DING S X. A survey of fault diagnosis and fault-tolerant techniques-Part Ⅱ: Fault diagnosis with knowledge-based and hybrid/active approaches[J]. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3768-3774. |
14 | 肖勇, 徐俊. 基于组合赋权与TOPSIS的储能电站电池安全运行风险评价[J]. 储能科学与技术, 2022, 11(8): 2574-2584. |
XIAO Y, XU J. Risk assessment of battery safe operation in energy storage power station based on combination weighting and TOPSIS[J]. Energy Storage Science and Technology, 2022, 11(8): 2574-2584. | |
15 | CHEN Z Y, XIONG R, FENGCHUN S. Research status and analysis for battery safety accidents in electric vehicles[J]. Journal of Mechanical Engineering, 2019, 55: 93-104. |
16 | FENG F, HU X S, HU L, et al. Propagation mechanisms and diagnosis of parameter inconsistency within Li-Ion battery packs[J]. Renewable and Sustainable Energy Reviews, 2019, 112: 102-113. |
17 | KONG X D, ZHENG Y J, OUYANG M G, et al. Fault diagnosis and quantitative analysis of micro-short circuits for lithium-ion batteries in battery packs[J]. Journal of Power Sources, 2018, 395: 358-368. |
18 | 王志福, 罗崴, 闫愿, 等. 基于GAPSO-FNN神经网络的锂离子电池传感器故障诊断[J]. 储能科学与技术, 2023, 12(2): 602-608. |
WANG Z F, LUO W, YAN Y, et al. Fault diagnosis of lithium-ion battery sensors using GAPSO-FNN[J]. Energy Storage Science and Technology, 2023, 12(2): 602-608. | |
19 | 潘岳, 韩雪冰, 欧阳明高, 等. 锂离子电池内短路检测算法及其在实际数据中的应用[J]. 储能科学与技术, 2023, 12(1): 198-208. |
PAN Y, HAN X B, OUYANG M G, et al. Research on the detection algorithm for internal short circuits in lithium-ion batteries and its application to real operating data[J]. Energy Storage Science and Technology, 2023, 12(1): 198-208. | |
20 | ZHAO Y, LIU P, WANG Z P, et al. Fault and defect diagnosis of battery for electric vehicles based on big data analysis methods[J]. Applied Energy, 2017, 207: 354-362. |
21 | SHANG Y L, LU G P, KANG Y Z, et al. A multi-fault diagnosis method based on modified Sample Entropy for lithium-ion battery strings[J]. Journal of Power Sources, 2020, 446: 227275. |
22 | WANG Z P, HONG J C, LIU P, et al. Voltage fault diagnosis and prognosis of battery systems based on entropy and Z-score for electric vehicles[J]. Applied Energy, 2017, 196: 289-302. |
23 | LSKAAFI M. Fault diagnosis and failure prognostics of lithium-ion battery based on least squares support vector machine and memory particle filter framework[M]. America: University of Tennessee, 2015 |
24 | LI D, ZHANG Z S, LIU P, et al. Battery fault diagnosis for electric vehicles based on voltage abnormality by combining the long short-term memory neural network and the equivalent circuit model[J]. IEEE Transactions on Power Electronics, 2021, 36(2): 1303-1315. |
25 | 梅林, 张凤荔, 高强. 离群点检测技术综述[J]. 计算机应用研究, 2020, 37(12): 3521-3527. |
MEI L, ZHANG F L, GAO Q. Overview of outlier detection technology[J]. Application Research of Computers, 2020, 37(12): 3521-3527. | |
26 | LI S W, ZHANG C P, DU J C, et al. Fault diagnosis for lithium-ion batteries in electric vehicles based on signal decomposition and two-dimensional feature clustering[J]. Green Energy and Intelligent Transportation, 2022, 1(1): 100009. |
[1] | Shaohong ZENG, Weixiong WU, Jizhen LIU, Shuangfeng WANG, Shifeng YE, Zhenyu FENG. A review of research on immersion cooling technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(9): 2888-2903. |
[2] | Xin CHEN, Yunwu LI, Xincheng LIANG, Falin LI, Zhidong ZHANG. Battery health state estimation of combined Transformer-GRU based on modal decomposition [J]. Energy Storage Science and Technology, 2023, 12(9): 2927-2936. |
[3] | Xiangyang ZHOU, Yingjie HU, Jiahao LIANG, Qijie ZHOU, Kang WEN, Song CHEN, Juan YANG, Jingjing TANG. Preparation and lithium storage characteristics of high-performance anode materials based on spheroidized tailings of natural flake graphite [J]. Energy Storage Science and Technology, 2023, 12(9): 2767-2777. |
[4] | Wanwei JIANG, Chengjing LIANG, Li QIAN, Meicheng LIU, Mengxiang ZHU, Jun MA. Regulating tin-based three-dimensional graphene foam and its performance as a lithium-ion battery anode [J]. Energy Storage Science and Technology, 2023, 12(9): 2746-2751. |
[5] | Anhao ZUO, Ruqing FANG, Zhe LI. Kinetic characterization of electrode materials for lithium-ion batteries via single-particle microelectrodes [J]. Energy Storage Science and Technology, 2023, 12(8): 2457-2481. |
[6] | Jiaxing YANG, Hengyun ZHANG, Yidong XU. Heat generation analysis for lithium-ion battery components using electrochemical and thermal coupled model [J]. Energy Storage Science and Technology, 2023, 12(8): 2615-2625. |
[7] | Jilu ZHANG, Yuchen DONG, Qiang SONG, Siming YUAN, Xiaodong GUO. Controllable synthesis and electrochemical mechanism related to polycrystalline and single-crystalline Ni-rich layered LiNi0.9Co0.05Mn0.05O2 cathode materials [J]. Energy Storage Science and Technology, 2023, 12(8): 2382-2389. |
[8] | Yu GUO, Yiwei WANG, Juan ZHONG, Jinqiao DU, Jie TIAN, Yan LI, Fangming JIANG. Fault diagnosis method for microinternal short circuits in lithium-ion batteries based on incremental capacity curve [J]. Energy Storage Science and Technology, 2023, 12(8): 2536-2546. |
[9] | Qingsong ZHANG, Fangwei BAO, Jiangjao NIU. Risk analysis method of thermal runaway gas explosion in lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2263-2270. |
[10] | Yubo ZHANG, Youyuan WANG, Dongning HUANG, Ziyi WANG, Weigen CHEN. Prognostic method of lithium-ion battery lifetime degradation under various working conditions [J]. Energy Storage Science and Technology, 2023, 12(7): 2238-2245. |
[11] | Qinpei CHEN, Xuehui WANG, Wenzhong MI. Experiential study on the toxic and explosive characteristics of thermal runaway gas generated in electric-vehicle lithium-ion battery systems [J]. Energy Storage Science and Technology, 2023, 12(7): 2256-2262. |
[12] | Wenda ZAN, Rui ZHANG, Fei DING. Development and application of electrochemical models for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2302-2318. |
[13] | Shuqin LIU, Xiaoyan WANG, Zhendong ZHANG, Zhenxia DUAN. Experimental and simulation research on liquid-cooling system of lithium-ion battery packs [J]. Energy Storage Science and Technology, 2023, 12(7): 2155-2165. |
[14] | Maosong FAN, Mengmeng GENG, Guangjin ZHAO, Kai YANG, Fangfang WANG, Hao LIU. Research on battery sorting technology for echelon utilization based on multifrequency impedance [J]. Energy Storage Science and Technology, 2023, 12(7): 2202-2210. |
[15] | Yi WANG, Xuebing CHEN, Yuanxi WANG, Jieyun ZHENG, Xiaosong LIU, Hong LI. Overview of multilevel failure mechanism and analysis technology of energy storage lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2079-2094. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||