Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (5): 1643-1652.doi: 10.19799/j.cnki.2095-4239.2023.0865
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Nana FENG(), Ming YANG(), Zhouli HUI, Ruijie WANG, Hongyang NING
Received:
2023-12-01
Revised:
2023-12-07
Online:
2024-05-28
Published:
2024-05-28
Contact:
Ming YANG
E-mail:2321714845@qq.com;hgsnje@163.com
CLC Number:
Nana FENG, Ming YANG, Zhouli HUI, Ruijie WANG, Hongyang NING. Prediction of the remaining useful life of lithium batteries based on Antlion optimization Gaussian process regression[J]. Energy Storage Science and Technology, 2024, 13(5): 1643-1652.
1 | BARRE A, DEGUILHEM B, GROLLEAU S, et al. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications[J]. Journal of Power Sources, 2013, 241: 680-689. |
2 | LI Y, LIU K L, FOLEY A M, et al. Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review[J]. Renewable and Sustainable Energy Reviews, 2019, 113: 109254. |
3 | XU J, MEI X S, WANG X, et al. A relative state of health estimation method based on wavelet analysis for lithium-ion battery cells[J]. IEEE Transactions on Industrial Electronics, 2021, 68(8): 6973-6981. |
4 | HU X S, XU L, LIN X K, et al. Battery lifetime prognostics[J]. Joule, 2020, 4(2): 310-346. |
5 | REZVANIZANIANI S M, LIU Z C, CHEN Y, et al. Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility[J]. Journal of Power Sources, 2014, 256: 110-124. |
6 | LIAO L X, KÖTTIG F. Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction[J]. IEEE Transactions on Reliability, 2014, 63(1): 191-207. |
7 | DAI H D, ZHAO G C, LIN M Q, et al. A novel estimation method for the state of health of lithium-ion battery using prior knowledge-based neural network and Markov chain[J]. IEEE Transactions on Industrial Electronics, 2019, 66(10): 7706-7716. |
8 | SU C, CHEN H J. A review on prognostics approaches for remaining useful life of lithium-ion battery[J]. IOP Conference Series: Earth and Environmental Science, 2017, 93: 012040. |
9 | JIA J F, LIANG J Y, SHI Y H, et al. SOH and RUL prediction of lithium-ion batteries based on Gaussian process regression with indirect health indicators[J]. Energies, 2020, 13(2): 375. |
10 | 熊庆, 邸振国, 汲胜昌. 锂离子电池健康状态估计及寿命预测研究进展综述[J]. 高电压技术, 2024, 50(3): 1182-1195. |
XIONG Q, DI Z G, JI S C. Review on health state estimation and life prediction of lithium-ion batteries[J]. High Voltage Engineering, 2024, 50(3): 1182-1195. | |
11 | LIN H Y, KANG L Y, XIE D, et al. Online state-of-health estimation of lithium-ion battery based on incremental capacity curve and BP neural network[J]. Batteries, 2022, 8(4): 29. |
12 | LI X Y, YUAN C G, WANG Z P. State of health estimation for Li-ion battery via partial incremental capacity analysis based on support vector regression[J]. Energy, 2020, 203: 117852. |
13 | LI H, PAN D H, PHILIP CHEN C L. Intelligent prognostics for battery health monitoring using the mean entropy and relevance vector machine[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2014, 44(7): 851-862. |
14 | 王瑞洁, 惠周利, 杨明. 基于间接健康指标的高斯过程回归对锂电池SOH预测[J]. 储能科学与技术, 2023, 12(2): 560-569. |
WANG R J, HUI Z L, YANG M. Gaussian process regression based on indirect health indicators for SOH estimation of lithium battery[J]. Energy Storage Science and Technology, 2023, 12(2): 560-569. | |
15 | 戴彦文, 于艾清. 基于健康特征参数的CNN-LSTM&GRU组合锂电池SOH估计[J]. 储能科学与技术, 2022, 11(5): 1641-1649. |
DAI Y W, YU A Q. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation[J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649. | |
16 | 吴忠强, 胡晓宇, 马博岩, 等. 基于PF-LSTM的锂电池剩余使用寿命预测[J]. 计量学报, 2023, 44(6): 939-947. |
WU Z Q, HU X Y, MA B Y, et al. Prediction of the remaining useful life of lithium-ion batteries based on PF-LSTM[J]. Acta Metrologica Sinica, 2023, 44(6): 939-947. | |
17 | ZHANG L, LI K, DU D J, et al. A sparse least squares support vector machine used for SOC estimation of Li-ion Batteries[J]. IFAC-PapersOnLine, 2019, 52(11): 256-261. |
18 | CHEN T, MORRIS J, MARTIN E. Gaussian process regression for multivariate spectroscopic calibration[J]. Chemometrics and Intelligent Laboratory Systems, 2007, 87(1): 59-71. |
19 | GOEBEL K, SAHA B, SAXENA A, et al. Prognostics in battery health management[J]. IEEE Instrumentation & Measurement Magazine, 2008, 11(4): 33-40. |
20 | 钱成. 基于改进粒子滤波的锂电池剩余寿命预测及健康状态估计[D]. 西安: 西安建筑科技大学, 2022. |
QIAN C. Residual life prediction and health state estimation of lithium battery based on improved particle filter[D]. Xi'an: Xi'an University of Architecture and Technology, 2022. | |
21 | MIRJALILI S. The ant lion optimizer[J]. Advances in Engineering Software, 2015, 83(C): 80-98. |
22 | 张韬, 王阳, 王言子, 等. 蜻蜓算法优化的高斯过程回归对锂电池健康状态预测[J/OL]. 重庆理工大学学报(自然科学), 2023: 1-9. (2023-08-25). https://kns.cnki.net/kcms/detail/50.1205.T.20230824.1614.002.html. |
ZHANG T, WANG Y, WANG Y Z, et al. Dragonfly algorithm optimized Gaussian process regression for lithium battery health state prediction[J/OL]. Journal of Chongqing University of Technology (Natural Science), 2023: 1-9. (2023-08-25). https://kns.cnki.net/kcms/detail/50.1205.T.20230824.1614.002.html. | |
23 | 李放, 闵永军, 王琛, 等. 基于充电过程的锂电池SOH估计和RUL预测[J]. 储能科学与技术, 2022, 11(10): 3316-3327. |
LI F, MIN Y J, WANG C, et al. State of health estimation and remaining useful life predication of lithium batteries using charging process[J]. Energy Storage Science and Technology, 2022, 11(10): 3316-3327. | |
24 | 郑青根, 杨祥国, 刘冬, 等. 改进灰狼优化最小二乘支持向量机的锂电池剩余寿命预测[J/OL]. 重庆大学学报, 2023: 1-13. (2023-04-19). https://kns.cnki.net/kcms/detail/50.1044.n.20230418.1737.002.html. |
ZHENG Q G, YANG X G, LIU D, et al. Lithium battery remaining life prediction method based on improved grey Wolf optimization least squares support vector machine[J/OL]. Journal of Chongqing University, 2023: 1-13. (2023-04-19). https://kns.cnki.net/kcms/detail/50.1044.n.20230418.1737.002.html. |
[1] | Ziwei TANG, Yupu SHI, Yuchan ZHANG, Yibo ZHOU, Huiling DU. Prediction of lithium-ion battery capacity degradation trajectory based on Informer [J]. Energy Storage Science and Technology, 2024, 13(5): 1658-1666. |
[2] | Gaoqi LIAN, Min YE, Qiao WANG, Yan LI, Yuchuan MA, Yiding SUN, Penghui DU. State-of-charge estimation of lithium-ion batteries in rapid temperature-varying environments based on improved battery model and optimized adaptive cubature Kalman filter [J]. Energy Storage Science and Technology, 2024, 13(5): 1667-1676. |
[3] | Xinbing XIE, Kaiyue YANG, Xiaozhong DU. Mechanical behavior and structure of lithium-ion battery electrode calendering process [J]. Energy Storage Science and Technology, 2024, 13(5): 1699-1706. |
[4] | Lin HE, Jiangyan LIU, Bin LIU, Kuining LI, Shuai DAI. Generalized impact of data distribution diversity on SOC prediction of lithium battery [J]. Energy Storage Science and Technology, 2024, 13(5): 1677-1687. |
[5] | Yalu HAN, Yige CHEN, Huifang DI, Jiehuan LIN, Zhenbing WANG, Yang ZHANG, Fangyuan SU, Chengmeng CHEN. Research progress on failure of lithium-ion batteries under different service conditions [J]. Energy Storage Science and Technology, 2024, 13(4): 1338-1349. |
[6] | Ge LI, Xiangdong KONG, Yuedong SUN, Fei CHEN, Yuebo YUAN, Xuebing HAN, Yuejiu ZHENG. Method for sorting the dynamic characteristics of lithium-ion battery consistency based on production line big data [J]. Energy Storage Science and Technology, 2024, 13(4): 1188-1196. |
[7] | Bingjin LI, Xiaoxia HAN, Wenjie ZHANG, Weiguo ZENG, Jinde WU. Review of the remaining useful life prediction methods for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(4): 1266-1276. |
[8] | Ruizi WANG, Xunliang LIU, Ruifeng DOU, Wenning ZHOU, Juan FANG. A comparative study on diffusion-induced stress and thermal stress during discharge of ternary soft pack lithium-ion battery [J]. Energy Storage Science and Technology, 2024, 13(4): 1128-1141. |
[9] | Yuting WANG, Qiutong LI, Yiming HU, Xin GUO. Techniques for monitoring internal signals of lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(4): 1253-1265. |
[10] | Xiaoyu SHEN, Congbo YIN. SOH estimation of lithium-ion batteries using a convolutional Fastformer [J]. Energy Storage Science and Technology, 2024, 13(3): 990-999. |
[11] | Zhiguo ZHANG, Huaqing LI, Li WANG, Xiangming HE. Characteristics and preparation of metallized plastic current collectors for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 749-758. |
[12] | Jian LIU, Libo YU, Zhenxing WU, Jiegang MOU. Effect of thermal characteristics of lithium-ion battery charging and discharging equipment on air cooling [J]. Energy Storage Science and Technology, 2024, 13(3): 914-923. |
[13] | Meiling WU, Lei NIU, Shiyou LI, Dongni ZHAO. Research progress on cathode prelithium additives used in lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 759-769. |
[14] | Xiaolei LI, Jian GAO, Weidong ZHOU, Hong LI. Application of COMSOL multiphysics in lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(2): 546-567. |
[15] | Ke PENG, Zhicheng ZHANG, Youzhang HU, Xuhui ZHANG, Jiahui ZHOU, Bin LI. Finite element-based motion analysis and optimization of sagger in thermo-mechanical coupling field [J]. Energy Storage Science and Technology, 2024, 13(2): 634-642. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||