Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (8): 2519-2528.doi: 10.19799/j.cnki.2095-4239.2024.0236
• Energy Storage Materials and Devices • Previous Articles Next Articles
Chaofeng XU1,2(), Xiaolei HAN1,2, Jinzhi WANG2,3,4, Xiaojun WANG1(), Zhiming LIU1(), Jingwen ZHAO2,3,4()
Received:
2024-03-18
Revised:
2024-04-16
Online:
2024-08-28
Published:
2024-08-15
Contact:
Xiaojun WANG, Zhiming LIU, Jingwen ZHAO
E-mail:xucf@qibebt.ac.cn;wangxiaojunchem@163.com;zmliu@qust.edu.cn;zhaojw@qibebt.ac.cn
CLC Number:
Chaofeng XU, Xiaolei HAN, Jinzhi WANG, Xiaojun WANG, Zhiming LIU, Jingwen ZHAO. Crystalline zinc-ion solid-state electrolytes based on weak coordination environments[J]. Energy Storage Science and Technology, 2024, 13(8): 2519-2528.
Fig. 5
(a) Cyclic voltammetry (CV) curves and (b) corresponding chronocoulometry curves of Zn plating/stripping using Zn|Zn(TFO)2(SN)4|Ti cells; (c) Plating/stripping test of the Zn||Zn symmetric cell with Zn(TFO)2(SN)4 at 0.05 mA/cm2; (d) Cross-sectional and surface SEM images of zinc electrodes after 80 h cycling in Zn(TFO)2(SN)4; (e) Charge-discharge profiles of the all-solid-state Zn-O2 cell"
Table 1
Comparison of the performance of Zn(TFO)2(SN)4 solid state electrolyte with other types of solid state electrolytes"
锌离子固态电解质 | 离子电导率 /(S/cm) | 电流密度/(mA/cm2)/极化电压/V | 参考 文献 |
---|---|---|---|
Zn(TFO)2(SN)4 | 4.4×10-6(RT) | 0.05/0.08 | 本工作 |
PVHF-Zn(TFO)2 | 1.99×10-6(RT) | 0.2/0.4(寿命<40 h) | [ |
PEO-Zn(TFO)2 | 1.09×10-6(RT) | — | [ |
ZnCl2(PEO)24 | 10-9~10-8(RT) | — | [ |
ZnX2(PEO)20(X=Br, I) | 10-9~10-8(RT) | — | [ |
ZnCl2PEO n (n=4~16) | 10-8~10-7(RT) | — | [ |
1 | MA T H, WANG Z X, WU D X, et al. High-areal-capacity and long-cycle-life all-solid-state battery enabled by freeze drying technology[J]. Energy & Environmental Science, 2023, 16(5): 2142-2152. DOI: 10.1039/D3EE00420A. |
2 | LIU W, ZHAO Q W, YU H M, et al. Metallic particles-induced surface reconstruction enabling highly durable zinc metal anode[J]. Advanced Functional Materials, 2023, 33(38): 2302661. DOI: 10.1002/adfm.202302661. |
3 | PARKER J F, CHERVIN C N, PALA I R, et al. Rechargeable nickel-3D zinc batteries: An energy-dense, safer alternative to lithium-ion[J]. Science, 2017, 356(6336): 415-418. DOI: 10.1126/science.aak9991. |
4 | ZHENG J X, ZHAO Q, TANG T, et al. Reversible epitaxial electrodeposition of metals in battery anodes[J]. Science, 2019, 366(6465): 645-648. DOI: 10.1126/science.aax6873. |
5 | SHEN Y H, LIU B, LIU X R, et al. Water-in-salt electrolyte for safe and high-energy aqueous battery[J]. Energy Storage Materials, 2021, 34: 461-474. DOI: 10.1016/j.ensm.2020.10.011. |
6 | ZHANG L, RODRÍGUEZ-PÉREZ I A, JIANG H, et al. ZnCl2 "water-in-salt" electrolyte transforms the performance of vanadium oxide as a Zn battery cathode[J]. Advanced Functional Materials, 2019, 29(30): 1902653. DOI: 10.1002/adfm.201902653. |
7 | SUN L, YAO Y Q, DAI L X, et al. Sustainable and high-performance Zn dual-ion batteries with a hydrogel-based water-in-salt electrolyte[J]. Energy Storage Materials, 2022, 47: 187-194. DOI: 10.1016/j.ensm.2022.02.012. |
8 | ZHANG Y N, WU D S, HUANG F L, et al. "Water-in-salt" nonalkaline gel polymer electrolytes enable flexible zinc-air batteries with ultra-long operating time[J]. Advanced Functional Materials, 2022, 32(34): 2203204. DOI: 10.1002/adfm.202203204. |
9 | WANG J, TIAN J X, LIU G X, et al. In situ insight into the interfacial dynamics in "water-in-salt" electrolyte-based aqueous zinc batteries[J]. Small Methods, 2023, 7(6): 2300392. DOI: 10.1002/smtd.202300392. |
10 | DI S L, NIE X Y, MA G Q, et al. Zinc anode stabilized by an organic-inorganic hybrid solid electrolyte interphase[J]. Energy Storage Materials, 2021, 43: 375-382. DOI: 10.1016/j.ensm. 2021.09.021. |
11 | CHEN J Z, ZHOU W J, QUAN Y H, et al. Ionic liquid additive enabling anti-freezing aqueous electrolyte and dendrite-free Zn metal electrode with organic/inorganic hybrid solid electrolyte interphase layer[J]. Energy Storage Materials, 2022, 53: 629-637. DOI: 10.1016/j.ensm.2022.10.004. |
12 | HOU Z G, ZHANG X Q, DONG M F, et al. A large format aqueous rechargeable LiMn2O4/Zn battery with high energy density and long cycle life[J]. Science China Materials, 2021, 64(3): 783-788. DOI: 10.1007/s40843-020-1503-7. |
13 | KUNDU D P, HOSSEINI VAJARGAH S, WAN L W, et al. Aqueous vs. nonaqueous Zn-ion batteries: Consequences of the desolvation penalty at the interface[J]. Energy & Environmental Science, 2018, 11(4): 881-892. DOI: 10.1039/C8EE00378E. |
14 | WANG F, BORODIN O, GAO T, et al. Highly reversible zinc metal anode for aqueous batteries[J]. Nature Materials, 2018, 17: 543-549. DOI: 10.1038/s41563-018-0063-z. |
15 | KANG L Z, ZHENG J L, YUE K, et al. Amino-functionalized interfacial layer enables an ultra-uniform amorphous solid electrolyte interphase for high-performance aqueous zinc-based batteries[J]. Small, 2023, 19(44): DOI: 10.1002/smll.202304094. |
16 | LIN Y X, LI Y, MAI Z X, et al. Interfacial regulation via anionic surfactant electrolyte additive promotes stable (002)-textured zinc anodes at high depth of discharge[J]. Advanced Energy Materials, 2023, 13(38): 2301999. DOI: 10.1002/aenm.202301999. |
17 | AN Y L, XU B G, TIAN Y, et al. Reversible Zn electrodeposition enabled by interfacial chemistry manipulation for high-energy anode-free Zn batteries[J]. Materials Today, 2023, 70: 93-103. DOI: 10.1016/j.mattod.2023.09.008. |
18 | XIE S Y, LI Y, DONG L B. Stable anode-free zinc-ion batteries enabled by alloy network-modulated zinc deposition interface[J]. Journal of Energy Chemistry, 2023, 76: 32-40. DOI: 10.1016/j.jechem.2022.08.040. |
19 | CAO L S, LI D, HU E Y, et al. Solvation structure design for aqueous Zn metal batteries[J]. Journal of the American Chemical Society, 2020, 142(51): 21404-21409. DOI: 10.1021/jacs.0c09794. |
20 | ZHENG J X, ARCHER L A. Controlling electrochemical growth of metallic zinc electrodes: Toward affordable rechargeable energy storage systems[J]. Science Advances, 2021, 7(2): eabe0219. DOI: 10.1126/sciadv.abe0219. |
21 | DUERAMAE I, OKHAWILAI M, KASEMSIRI P, et al. Properties enhancement of carboxymethyl cellulose with thermo-responsive polymer as solid polymer electrolyte for zinc ion battery[J]. Scientific Reports, 2020, 10(1): 12587. DOI: 10.1038/s41598-020-69521-x. |
22 | YANG P H, FENG C Z, LIU Y P, et al. Thermal self-protection of zinc-ion batteries enabled by smart hygroscopic hydrogel electrolytes[J]. Advanced Energy Materials, 2020, 10(48): 2002898. DOI: 10.1002/aenm.202002898. |
23 | ZHU J C, YAO M J, HUANG S, et al. Thermal-gated polymer electrolytes for smart zinc-ion batteries[J]. Angewandte Chemie International Edition, 2020, 59(38): 16480-16484. DOI: 10.1002/anie.202007274. |
24 | LIU Y, ZOU H Q, HUANG Z L, et al. In situ polymerization of 1, 3-dioxane as a highly compatible polymer electrolyte to enable the stable operation of 4.5 V Li-metal batteries[J]. Energy & Environmental Science, 2023, 16(12): 6110-6119. DOI: 10.1039/D3EE02797J. |
25 | LI J C, MA C, CHI M F, et al. Solid electrolyte: The key for high-voltage lithium batteries[J]. Advanced Energy Materials, 2015, 5(4): 1401408. DOI: 10.1002/aenm.201401408. |
26 | BAN A H, PARK M S, PARK T H, et al. Nonflammable ionic liquid-based quasi-solid-state electrolytes for highly safe sodium-ion batteries[J]. ECS Meeting Abstracts, 2021, (6): 405. DOI: 10. 1149/ma2021-016405mtgabs. |
27 | LI Y S, YANG X D, HE Y, et al. A novel ultrathin multiple-kinetics-enhanced polymer electrolyte editing enabled wide-temperature fast-charging solid-state zinc metal batteries[J]. Advanced Functional Materials, 2024, 34(4): 2307736. DOI: 10.1002/adfm. 202307736. |
28 | QIU B, LIANG K Y, HUANG W, et al. Crystal-facet manipulation and interface regulation via TMP-modulated solid polymer electrolytes toward high-performance Zn metal batteries[J]. Advanced Energy Materials, 2023, 13(32): 2301193. DOI: 10. 1002/aenm.202301193. |
29 | 黄渭彬, 张彪, 范金成, 等. ZIF-8复合PEO基固态电解质的制备与改性研究[J]. 储能科学与技术, 2023, 12(4): 1083-1092. DOI: 10.19799/j.cnki.2095-4239.2022.0532. |
HUANG W B, ZHANG B, FAN J C, et al. Preparation and modification of ZIF-8 composite PEO based solid electrolyte[J]. Energy Storage Science and Technology, 2023, 12(4): 1083-1092. DOI: 10.19799/j.cnki.2095-4239.2022.0532. | |
30 | IMANAKA N, TAMURA S. Development of multivalent ion conducting solid electrolytes[J]. Bulletin of the Chemical Society of Japan, 2011, 84(4): 353-362. DOI: 10.1246/bcsj.20100178. |
31 | IKEDA S, KANBAYASHI Y, NOMURA K, et al. Solid electrolytes with multivalent cation conduction (2): Zinc ion conduction in Zn-Zr-PO4 system[J]. Solid State Ionics, 1990, 40: 79-82. DOI: 10.1016/0167-2738(90)90291-X. |
32 | JOHNSON D A, NELSON P G. Factors determining the ligand field stabilization energies of the hexaaqua 2+ complexes of the first transition series and the Irving-williams order[J]. Inorganic Chemistry, 1995, 34(22): 5666-5671. DOI: 10.1021/ic00126a041. |
33 | HOU Z G, DONG M F, XIONG Y L, et al. A high-energy and long-life aqueous Zn/birnessite battery via reversible water and Zn2+ coinsertion[J]. Small, 2020, 16(26): e2001228. DOI: 10.1002/smll.202001228. |
34 | RICHENS D T. Ligand substitution reactions at inorganic centers[J]. Chemical Reviews, 2005, 105(6): 1961-2002. DOI: 10.1021/cr030705u. |
35 | PRAKASH P, FALL B, AGUIRRE J, et al. A soft co-crystalline solid electrolyte for lithium-ion batteries[J]. Nature Materials, 2023, 22(5): 627-635. DOI: 10.1038/s41563-023-01508-1. |
36 | WANG J, ZHAO Z, LU G, et al. Room-temperature fast zinc-ion conduction in molecule-flexible solids[J]. Materials Today Energy, 2021, 20: 100630. DOI: 10.1016/j.mtener.2020.100630. |
37 | ALARCO P J, ABU-LEBDEH Y, ABOUIMRANE A, et al. The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors[J]. Nature Materials, 2004, 3: 476-481. DOI: 10.1038/nmat1158. |
38 | GOODENOUGH J B, HONG H Y P, KAFALAS J A. Fast Na+-ion transport in skeleton structures[J]. Materials Research Bulletin, 1976, 11(2): 203-220. DOI: 10.1016/0025-5408(76)90077-5. |
39 | HONG H Y P. Crystal structures and crystal chemistry in the system Na1+ xZr2SixP3- xO12[J]. Materials Research Bulletin, 1976, 11(2): 173-182. DOI: 10.1016/0025-5408(76)90073-8. |
40 | DINNEBIER R, SOFINA N, HILDEBRANDT L, et al. Crystal structures of the trifluoromethyl sulfonates M(SO3CF3)2 (M=Mg, Ca, Ba, Zn, Cu) from synchrotron X-ray powder diffraction data[J]. Acta Crystallographica Section B, Structural Science, 2006, 62(Pt 3): 467-473. DOI: 10.1107/S0108768106009517. |
41 | MANTHIRAM A, GOODENOUGH J B. Layered lithium cobalt oxide cathodes[J]. Nature Energy, 2021, 6: 323. DOI: 10.1038/s41560-020-00764-8. |
42 | ROEDERN E, KÜHNEL R S, REMHOF A, et al. Magnesium ethylenediamine borohydride as solid-state electrolyte for magnesium batteries[J]. Scientific Reports, 2017, 7: 46189. DOI: 10.1038/srep 46189. |
43 | IMANAKA N, TAMURA S. Development of multivalent ion conducting solid electrolytes[J]. Bulletin of the Chemical Society of Japan, 2011, 84(4): 353-362. DOI: 10.1246/bcsj.20100178. |
44 | SHEN Y N, DENG G H, GE C Q, et al. Solvation structure around the Li+ ion in succinonitrile-lithium salt plastic crystalline electrolytes[J]. Physical Chemistry Chemical Physics, 2016, 18(22): 14867-14873. DOI: 10.1039/C6CP02878K. |
45 | UMAR Y, MORSY M A. Ab initio and DFT studies of the molecular structures and vibrational spectra of succinonitrile[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2007, 66(4/5): 1133-1140. DOI: 10.1016/j.saa. 2006.05.026. |
46 | DAIGLE J C, ARNOLD A, VIJH A, et al. Solid-state NMR study of new copolymers as solid polymer electrolytes[J]. Magnetochemistry, 2018, 4(1): 13. DOI: 10.3390/magnetochemistry4010013. |
47 | FREITAG K M, KIRCHHAIN H, VAN WÜLLEN L, et al. Enhancement of Li ion conductivity by electrospun polymer fibers and direct fabrication of solvent-free separator membranes for Li ion batteries[J]. Inorganic Chemistry, 2017, 56(4): 2100-2107. DOI: 10.1021/acs.inorgchem.6b02781. |
48 | BOTTKE P, RETTENWANDER D, SCHMIDT W, et al. Ion dynamics in solid electrolytes: NMR reveals the elementary steps of Li+ hopping in the garnet Li6.5La3Zr1.75Mo0.25O12[J]. Chemistry of Materials, 2015, 27(19): 6571-6582. DOI: 10.1021/acs.chemmater.5b02231. |
49 | YANG H, HUQ R, FARRINGTON G C. Conductivity in PEO-based Zn(II) polymer electrolytes[J]. Solid State Ionics, 1990, 40: 663-665. DOI: 10.1016/0167-2738(90)90093-7. |
50 | VIJAYAKUMAR V, GHOSH M, KURIAN M, et al. An in situ cross-linked nonaqueous polymer electrolyte for zinc-metal polymer batteries and hybrid supercapacitors[J]. Small, 2020, 16(35): e2002528. DOI: 10.1002/smll.202002528. |
51 | ZENG Z Q, LIU G Z, JIANG Z P, et al. Zinc bis(2-ethylhexanoate), a homogeneous and bifunctional additive, to improve conductivity and lithium deposition for poly (ethylene oxide) based all-solid-state lithium metal battery[J]. Journal of Power Sources, 2020, 451: 227730. DOI: 10.1016/j.jpowsour. 2020.227730. |
52 | KARAN S, SAHU T B, SAHU M, et al. Characterization of ion transport property in hot-press cast solid polymer electrolyte (SPE) films: [PEO: Zn(CF3SO3)2][J]. Ionics, 2017, 23(10): 2721-2726. DOI: 10.1007/s11581-017-2036-7. |
53 | OVERBURY S H, BERTRAND P A, SOMORJAI G A. Surface composition of binary systems. Prediction of surface phase diagrams of solid solutions[J]. Chemical Reviews, 1975, 75(5): 547-560. DOI: 10.1021/cr60297a001. |
54 | BRUNO M. A revised thermodynamic model for crystal surfaces. I. Theoretical aspects[J]. CrystEngComm, 2017, 19(42): 6314-6324. DOI: 10.1039/C7CE01397C. |
55 | CHEN Z, LI X L, WANG D H, et al. Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures[J]. Energy & Environmental Science, 2021, 14(6): 3492-3501. DOI: 10.1039/D1EE00409C. |
56 | PLANCHA M J C, RANGEL C M, SEQUEIRA C A C. Pseudo-equilibrium phase diagrams for PEO-Zn salts-based electrolytes[J]. Solid State Ionics, 1999, 116(3/4): 293-300. DOI: 10.1016/S0167-2738(98)00356-7. |
57 | YANG H, FARRINGTON G C. Poly(ethylene oxide)-based Zn(II) halide electrolytes[J]. Journal of the Electrochemical Society, 1992, 139(6): 1646-1654. DOI: 10.1149/1.2069471. |
[1] | Ye CHEN, Jin LI, Houfu WU, Shaoyu ZHANG, Yuxi CHU, Ping ZHUO. Analysis of thermal runaway propagation and explosion risk of a large battery module for energy storage [J]. Energy Storage Science and Technology, 2024, 13(8): 2803-2812. |
[2] | Yufeng HUANG, Huanchao LIANG, Lei XU. Kalman filter optimize Transformer method for state of health prediction on lithium-ion battery [J]. Energy Storage Science and Technology, 2024, 13(8): 2791-2802. |
[3] | Yanyan KONG, Xiong ZHANG, Yabin AN, Chen LI, Xianzhong SUN, Kai WANG, Yanwei MA. Recent advances in preparation of MOF-derived porous carbon-based materials and their applications in anodes of lithium-ion capacitors [J]. Energy Storage Science and Technology, 2024, 13(8): 2665-2678. |
[4] | Yuan YAO, Ruoqi ZONG, Jianli GAI. Research progress of antimony- and bismuth-based metallic anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2649-2664. |
[5] | Wenhao GONG, Meng LI, Tao ZHANG, Ruotao ZHANG, Yanxia LIU. Development and fabrication of high-energy and long-endurance Li-ion batteries for UAVs [J]. Energy Storage Science and Technology, 2024, 13(8): 2550-2558. |
[6] | Lijun FAN, Baozhou WU, Kejun CHEN. Controllable synthesis of FeS2 with different morphologies and their sodium storage performances [J]. Energy Storage Science and Technology, 2024, 13(8): 2541-2549. |
[7] | Jieyu ZHANG, Shun ZHANG, Ning LI, Fanglei ZENG, Jianning DING. Preparation and performance of a flame-retardant gel polymer electrolyte [J]. Energy Storage Science and Technology, 2024, 13(8): 2529-2540. |
[8] | Chenqiang DU, Zhouhuan NIE, Huinan WANG, Jiwei ZHANG, Jingwei ZHANG. Construction of built-in electric field in TiO2@TiN heterojunctions toward boosting the polysulfide conversion [J]. Energy Storage Science and Technology, 2024, 13(8): 2499-2510. |
[9] | Dingbang HAO, Yongli LI. Na0.85Ni0.3Fe0.2Mn0.5O1.95F0.05@CuO cathode materials for high-rate and long cycling stability sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2489-2498. |
[10] | Zhiyong WANG, Junyao CAI, Yingqi SHE, Shulin ZHONG, Kanghua PAN. Surface-modification of graphite with N-heterocyclic conducting polymers as high performance anodes for Li-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2511-2518. |
[11] | Xiaojun ZHAO, Yingchao WANG, Meng CHEN, Peng YANG, Zhanwang AN, Jianli LIU, Di WU. Reliability analysis of the module busbars of power battery systems [J]. Energy Storage Science and Technology, 2024, 13(7): 2450-2458. |
[12] | Sen JIANG, Long CHEN, Chuangchao SUN, Jinze WANG, Ruhong LI, Xiulin FAN. Low-temperature lithium battery electrolytes: Progress and perspectives [J]. Energy Storage Science and Technology, 2024, 13(7): 2270-2285. |
[13] | Xiaoyu CHEN, Yu LIU, Yifan BAI, Jiajun YING, Ying LV, Lijia WAN, Junping HU, Xiaoling Chen. Preparation and performance of nickel cobalt hydroxide cathode material for nickel zinc batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2377-2385. |
[14] | Yang LU, Shuaishuai YAN, Xiao MA, Zhi LIU, Weili ZHANG, Kai LIU. Low-temperature electrolytes and their application in lithium batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2224-2242. |
[15] | Shijie LIAO, Ying WEI, Yunhui HUANG, Renzong HU, Henghui XU. 1,3-Difluorobenzene diluent-stabilizing electrode interface for high-performance low-temperature lithium metal batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2124-2130. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||