Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (4): 1413-1423.doi: 10.19799/j.cnki.2095-4239.2024.0935
• Energy Storage Materials and Devices • Previous Articles Next Articles
					
													Zhe HUANG1( ), Zhiming YU1, Zhaojin QING1, Zhaoli ZHANG2(
), Zhiming YU1, Zhaojin QING1, Zhaoli ZHANG2( )
)
												  
						
						
						
					
				
Received:2024-10-02
															
							
																	Revised:2024-11-08
															
							
															
							
																	Online:2025-04-28
															
							
																	Published:2025-05-20
															
						Contact:
								Zhaoli ZHANG   
																	E-mail:497882153@qq.com;zzlyzhang@swjtu.edu.cn
																					CLC Number:
Zhe HUANG, Zhiming YU, Zhaojin QING, Zhaoli ZHANG. Heat transfer characteristics of spherical thermal storage units based on PW/SEBS/EG composite phase change materials in a rotating fluid medium[J]. Energy Storage Science and Technology, 2025, 14(4): 1413-1423.
 
													
													Table 2
Thermal properties of CPCMs with different EG contents"
| 相变材料 | 导热系数/[W/(m·K)] | 密度/(kg/m3) | 熔化温度/℃ | 熔化焓值/(J/g) | 凝固温度/℃ | 凝固焓值/(J/g) | 
|---|---|---|---|---|---|---|
| PW | 0.23 | 828 | 39.24 | 175.7 | 40.73 | 182.9 | 
| PW/SEBS/EG-2%(mass fraction) | 0.57 | 968 | 38.46 | 164.5 | 40.73 | 168.6 | 
| PW/SEBS/EG-3%(mass fraction) | 0.97 | 970 | 38.55 | 171.8 | 40.95 | 166.1 | 
| PW/SEBS/EG-4%(mass fraction) | 1.38 | 990 | 38.25 | 166.9 | 40.99 | 162.7 | 
| PW/SEBS/EG-5%(mass fraction) | 2.46 | 1010 | 38.21 | 162.1 | 40.93 | 156.0 | 
| 1 | GAUTAM A, SAINI R P. A review on sensible heat based packed bed solar thermal energy storage system for low temperature applications[J]. Solar Energy, 2020, 207: 937-956. DOI:10.1016/j.solener.2020.07.027. | 
| 2 | SUN B Z, LIU Z Z, JI X, et al. Thermal energy storage characteristics of packed bed encapsulating spherical capsules with composite phase change materials[J]. Applied Thermal Engineering, 2022, 201(Part A): 117659. | 
| 3 | 张岩岩, 熊亚选, 陈亚辉, 等. 相变填充床储热系统研究与应用进展[J]. 储能科学与技术, 2023, 12(12): 3852-3872. DOI: 10.19799/j.cnki.2095-4239.2023.0543. | 
| ZHANG Y Y, XIONG Y X, CHEN Y H, et al. Recent progress in the investigation and application of packed-bed latent thermal energy storage systems[J]. Energy Storage Science and Technology, 2023, 12(12): 3852-3872. DOI: 10.19799/j.cnki.2095-4239.2023.0543. | |
| 4 | LENG G H, QIAO G, JIANG Z, et al. Micro encapsulated & form-stable phase change materials for high temperature thermal energy storage[J]. Applied Energy, 2018, 217: 212-220. DOI:10.1016/j.apenergy.2018.02.064. | 
| 5 | IGOR KRUPA, PATRIK SOBOLČIAK, HANEEN ABDELRAZEQ, et al. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications[J]. Applied Thermal Engineering, 2003, 23(3): 251-283. | 
| 6 | CÁRDENAS B, LEÓN N. High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques[J]. Renewable and Sustainable Energy Reviews, 2013, 27: 724-737. DOI:10.1016/j.rser.2013.07.028. | 
| 7 | SUN Z M, KONG W A, ZHENG S L, et al. Study on preparation and thermal energy storage properties of binary paraffin blends/opal shape-stabilized phase change materials[J]. Solar Energy Materials and Solar Cells, 2013, 117: 400-407. DOI:10.1016/j.solmat.2013.07.003. | 
| 8 | 胡小冬, 高学农, 李得伦, 等. 石蜡/膨胀石墨定形相变材料的性能[J]. 化工学报, 2013, 64(10): 3831-3837. DOI: 10.3969/j.issn.0438-1157.2013.10.047. | 
| HU X D, GAO X N, LI D L, et al. Performance of paraffin/expanded graphite composite phase change materials[J]. CIESC Journal, 2013, 64(10): 3831-3837. DOI: 10.3969/j.issn.0438-1157.2013.10.047. | |
| 9 | 张正国, 王学泽, 方晓明. 石蜡/膨胀石墨复合相变材料的结构与热性能[J]. 华南理工大学学报(自然科学版), 2006, 34(3): 1-5. DOI: 10.3321/j.issn: 1000-565X.2006.03.001. | 
| ZHANG Z G, WANG X Z, FANG X M. Structure and thermal properties of composite paraffin/expanded graphite phase-change material[J]. Journal of South China University of Technology (Natural Science Edition), 2006, 34(3): 1-5. DOI: 10. 3321/j.issn: 1000-565X.2006.03.001. | |
| 10 | 胡定华, 许肖永, 林肯, 等. 石蜡/膨胀石墨/石墨片复合相变材料导热性能研究[J]. 工程热物理学报, 2021, 42(9): 2414-2418. | 
| HU D H, XU X Y, LIN K, et al. Study on heat conductivity of paraffin/expanded graphite/graphite sheet composite material[J]. Journal of Engineering Thermophysics, 2021, 42(9): 2414-2418. | |
| 11 | 杨硕, 汪南, 吴淑英, 等. 纳米铝粉/石蜡复合相变储能材料的性能研究[J]. 材料导报, 2009, 23(24): 20-22. DOI: 10.3321/j.issn: 1005-023X.2009.24.006. | 
| YANG S, WANG N, WU S Y, et al. Study on performance of nano-aluminum/paraffin wax composite phase change materials[J]. Materials Review, 2009, 23(24): 20-22. DOI: 10.3321/j.issn: 1005-023X.2009.24.006. | |
| 12 | 张鸿声, 汪南, 朱冬生, 等. 纳米铜粉/石蜡复合相变储能材料的性能研究[J]. 材料导报, 2011, 25(S1): 173-176, 189. | 
| ZHANG H S, WANG N, ZHU D S, et al. Study on performance of nano-copper/paraffin wax composite phase change material[J]. Materials Reports, 2011, 25(S1): 173-176, 189. | |
| 13 | 徐斌, 楼白杨, 刘春雷, 等. 新型纳米铜/石蜡/PVP温敏复合材料的制备及其性能[J]. 传感技术学报, 2011, 24(12): 1676-1680. DOI: 10.3969/j.issn.1004-1699.2011.12.004. | 
| XU B, LOU B Y, LIU C L, et al. Synthesis and properties of novel nano-copper/paraffin/PVP thermo-sensitive composites[J]. Chinese Journal of Sensors and Actuators, 2011, 24(12): 1676-1680. DOI: 10.3969/j.issn.1004-1699.2011.12.004. | |
| 14 | YANG B, ZHANG R R, GAO Z, et al. Effect of nanoparticles and metal foams on heat transfer properties of PCMs[J]. International Journal of Thermal Sciences, 2022, 179: 107567. DOI:10.1016/j.ijthermalsci.2022.107567. | 
| 15 | 刘菁伟, 杨文彬, 田本强, 等. 石蜡/高密度聚乙烯/膨胀石墨导热增强型复合相变材料热导率的影响因素[J]. 高分子材料科学与工程, 2015, 31(5): 83-86, 92. DOI: 10.16865/j.cnki.1000-7555. 2015. 05.015. | 
| LIU J W, YANG W B, TIAN B Q, et al. Thermal conductivity of paraffin/HDPE/expanded graphite phase change composite[J]. Polymer Materials Science & Engineering, 2015, 31(5): 83-86, 92. DOI: 10.16865/j.cnki.1000-7555.2015.05.015. | |
| 16 | ZHANG Q L, ZHAO Y Q, FENG J C. Systematic investigation on shape stability of high-efficiency SEBS/paraffin form-stable phase change materials[J]. Solar Energy Materials and Solar Cells, 2013, 118: 54-60. DOI:10.1016/j.solmat.2013.07.035. | 
| 17 | DONG Y F, LIU H, ZHANG N, et al. Photo-to-thermal conversion and energy storage of polyethylene glycol/copper sulfide composite PCMs[J]. Solar Energy Materials and Solar Cells, 2022, 238: 111583. DOI:10.1016/j.solmat.2022.111583. | 
| 18 | 金波, 李明佳, 徐阳, 等. 双层填充床储热器储热性能实验研究[J]. 西安交通大学学报, 2018, 52(7): 80-86. DOI: 10.7652/xjtuxb201807012. | 
| JIN B, LI M J, XU Y, et al. Experimental study on the thermal performance of a thermal storage with double-layered packed bed[J]. Journal of Xi'an Jiaotong University, 2018, 52(7): 80-86. DOI: 10.7652/xjtuxb201807012. | |
| 19 | LI J, WANG W Q, DENG Y M, et al. Thermal performance analysis of composite phase change material of myristic acid-expanded graphite in spherical thermal energy storage unit[J]. Energies, 2023, 16(11): 4527. DOI: 10.3390/en16114527. | 
| 20 | MOORE F E, BAYAZITOGLU Y. Melting within a spherical enclosure[J]. Journal of Heat Transfer, 1982, 104(1): 19-23. DOI:10.1115/1.3245053. | 
| 21 | TANG Y, WANG Z C, ZHOU J Z, et al. Heat transfer analysis of hollow channel in phase change materials spherical capsule[J]. Applied Thermal Engineering, 2023, 219: 119390. DOI:10.1016/j.applthermaleng.2022.119390. | 
| 22 | LI M J, JIN B, MA Z, et al. Experimental and numerical study on the performance of a new high-temperature packed-bed thermal energy storage system with macroencapsulation of molten salt phase change material[J]. Applied Energy, 2018, 221: 1-15. DOI:10.1016/j.apenergy.2018.03.156. | 
| 23 | MAWIRE A, MCPHERSON M, VAN DEN HEETKAMP R R J, et al. Experimental volumetric heat transfer characteristics between oil and glass pebbles in a small glass tube storage[J]. Energy, 2010, 35(3): 1256-1263. DOI:10.1016/j.energy.2009.11.005. | 
| 24 | 方桂花, 连小刚, 张振华, 等. 基于圆柱形单元的储热装置放热实验研究[J]. 太阳能学报, 2022, 43(10): 452-457. DOI: 10.19912/j. 0254-0096.tynxb.2021-0161. | 
| FANG G H, LIAN X G, ZHANG Z H, et al. Experimental research on heat release of heat storage device based on cylindrical unit[J]. Acta Energiae Solaris Sinica, 2022, 43(10): 452-457. DOI: 10. 19912/j.0254-0096.tynxb.2021-0161. | 
| [1] | Guiyue SHI, Hailiang TAO, Zhitao ZUO, Jingxin LI, Jixiang CHEN, Jiaxi CHEN, Haisheng CHEN. Research on blade stress optimization method of axial flow compressor in compressed air energy storage system [J]. Energy Storage Science and Technology, 2025, 14(4): 1522-1532. | 
| [2] | Xinyi NI, Xiaomeng XU, Luowei CAO, Le LI, Xuejia YAO, Guodong JIA. Simulation of ultrasonic guided wave propagation characteristics in multilayer heterogeneous absorber tubes with non-homogeneous salt films [J]. Energy Storage Science and Technology, 2025, 14(3): 1168-1176. | 
| [3] | Yuehao CHEN, Sha CHEN, Huilan CHEN, Xiaoqin SUN, Yongqiang LUO. Simulation study on cooling performance of immersion liquid cooling systems for energy-storage battery packs [J]. Energy Storage Science and Technology, 2025, 14(2): 648-658. | 
| [4] | Xiaofei ZHEN, Beibei WANG, Xiaohu ZHANG, Yiming SUN, Wenjiong CAO, Ti DONG. Study on the generation and diffusion law of thermal runaway gas in lithium battery energy storage system [J]. Energy Storage Science and Technology, 2024, 13(6): 1986-1994. | 
| [5] | Yunfeng ZHANG, Xuewen ZHANG, Wei ZHONG, Duwei JIANG, Zewei CHEN, Jie ZHANG. Numerical simulation of heat transfer performance of plate-fin radiator reinforced with double cascade phase change material of paraffin and low melting point alloy [J]. Energy Storage Science and Technology, 2024, 13(5): 1460-1470. | 
| [6] | Xinyu LIU, Anan ZHANG, Changjiang LIAO. Numerical simulation analysis of solid oxide fuel cells with different support structures [J]. Energy Storage Science and Technology, 2024, 13(5): 1710-1720. | 
| [7] | Kan ZHANG, Ting FU, Jiangbo WANG. Study on thermal equalization of spider web thermal structure based on topology optimization method [J]. Energy Storage Science and Technology, 2024, 13(5): 1721-1730. | 
| [8] | Dongxu HU, Shaofei ZHU, Xiaogang WEI, Yadong CUI, Baohong ZHU, Xingjian DAI, Wen LI, Haisheng CHEN. Research on mechanics and dynamics of MW-level large energy storage flywheel shafting [J]. Energy Storage Science and Technology, 2024, 13(5): 1542-1550. | 
| [9] | Heqing TIAN, Yiming GAO, Junjie ZHOU. Numerical simulation on the melting process of binary chloride salt nanofluids in a square cavity [J]. Energy Storage Science and Technology, 2024, 13(3): 1030-1035. | 
| [10] | Jian LIU, Libo YU, Zhenxing WU, Jiegang MOU. Effect of thermal characteristics of lithium-ion battery charging and discharging equipment on air cooling [J]. Energy Storage Science and Technology, 2024, 13(3): 914-923. | 
| [11] | Qi LIAO, Xiaolin CAO, Yibo DENG, Yaolin YANG, Ting CHEN. Heat dissipation simulation of tram supercapacitor module [J]. Energy Storage Science and Technology, 2024, 13(2): 702-711. | 
| [12] | Hongchen LI, Baoming CHEN, Pengzhen ZHU, Chonglong ZHONG, Chaofu MA. Study on phase-change heat transfer characteristics of anisotropic TPMS skeleton composite materials [J]. Energy Storage Science and Technology, 2024, 13(12): 4319-4329. | 
| [13] | Weijie CHAI, Xijia ZHAO, Shihao CAO. Experimental and numerical studies on the melting heat storage of metal honeycomb-enhanced phase-change materials [J]. Energy Storage Science and Technology, 2024, 13(12): 4357-4367. | 
| [14] | Liming WANG, Mengqi WANG, Yimo LUO, Gesang YANG, Yuanyuan WANG, Lexiao WANG. Optimum design method for zeolite heat storage reactors [J]. Energy Storage Science and Technology, 2024, 13(12): 4272-4281. | 
| [15] | Zhenkun XIAO, Zhen CHEN, Zhuang YANG, Hongxun QI, Jun YAN. Thermodynamic analysis of an advanced high-temperature heat pump energy storage unit based on phase-change heat storage [J]. Energy Storage Science and Technology, 2024, 13(12): 4330-4338. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||
