Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (8): 3019-3027.doi: 10.19799/j.cnki.2095-4239.2025.0658
• Special Issue on Short Term High-Frequency High-Power Energy Storage • Previous Articles Next Articles
Lu WEI1,2(), Zhiyi LENG1,3,4, Jia YE1,3,4, Yujie XU1,2,3, Haisheng CHEN1,2,3(
)
Received:
2025-07-22
Revised:
2025-08-01
Online:
2025-08-28
Published:
2025-08-18
Contact:
Haisheng CHEN
E-mail:weilu@iet.cn;chen_hs@iet.cn
CLC Number:
Lu WEI, Zhiyi LENG, Jia YE, Yujie XU, Haisheng CHEN. Application of artificial intelligence in flywheel energy storage[J]. Energy Storage Science and Technology, 2025, 14(8): 3019-3027.
[1] | OULD AMROUCHE S, REKIOUA D, REKIOUA T, et al. Overview of energy storage in renewable energy systems[J]. International Journal of Hydrogen Energy, 2016, 41(45): 20914-20927. DOI: 10.1016/j.ijhydene.2016.06.243. |
[2] | AKINYELE D O, RAYUDU R K. Review of energy storage technologies for sustainable power networks[J]. Sustainable Energy Technologies and Assessments, 2014, 8: 74-91. DOI: 10.1016/j.seta.2014.07.004. |
[3] | 戴兴建, 魏鲲鹏, 张小章, 等. 飞轮储能技术研究五十年评述[J]. 储能科学与技术, 2018, 7(5): 765-782. DOI: 10.12028/j.issn.2095-4239.2018.0083. |
DAI X J, WEI K P, ZHANG X Z, et al. A review on flywheel energy storage technology in fifty years[J]. Energy Storage Science and Technology, 2018, 7(5): 765-782. DOI: 10.12028/j.issn.2095-4239.2018.0083. | |
[4] | BOLUND B, BERNHOFF H, LEIJON M. Flywheel energy and power storage systems[J]. Renewable and Sustainable Energy Reviews, 2007, 11(2): 235-258. DOI: 10.1016/j.rser.2005.01.004. |
[5] | LI Y, LI Y B, JI P F, et al. Development of energy storage industry in China: A technical and economic point of review[J]. Renewable and Sustainable Energy Reviews, 2015, 49: 805-812. DOI: 10.1016/j.rser.2015.04.160. |
[6] | PEARRE N S, SWAN L G. Technoeconomic feasibility of grid storage: Mapping electrical services and energy storage technologies[J]. Applied Energy, 2015, 137: 501-510. DOI: 10.1016/j.apenergy.2014.04.050. |
[7] | AMIRYAR M E, PULLEN K R. A review of flywheel energy storage system technologies and their applications[J]. Applied Sciences, 2017, 7(3): 286. DOI: 10.3390/app7030286. |
[8] | 解学芳. 人工智能时代的文化创意产业智能化创新: 范式与边界[J]. 同济大学学报(社会科学版), 2019, 30(1): 42-51. |
XIE X F. Intelligent innovation of cultural and creative industries in the age of artificial intelligence: Paradigms and boundaries[J]. Journal of Tongji University (Social Science Section), 2019, 30(1): 42-51. | |
[9] | 孙晔, 吴飞扬. 人工智能的研究现状及发展趋势[J]. 价值工程, 2013, 32(28): 5-7. DOI: 10.14018/j.cnki.cn13-1085/n.2013.28.137. |
SUN Y, WU F Y. Research status and development tendency of artificial intelligence[J]. Value Engineering, 2013, 32(28): 5-7. DOI: 10.14018/j.cnki.cn13-1085/n.2013.28.137. | |
[10] | 王飞跃. 我国生成式人工智能的发展现状与趋势[J]. 人民论坛, 2025(2): 21-26. |
WANG F Y. Development status and trend of generative artificial intelligence in China[J]. People's Tribune, 2025(2): 21-26. | |
[11] | SINCHUK Y, SHISHKINA O, GUEGUEN M, et al. X-ray CT based multi-layer unit cell modeling of carbon fiber-reinforced textile composites: Segmentation, meshing and elastic property homogenization[J]. Composite Structures, 2022, 298: 116003. DOI: 10.1016/j.compstruct.2022.116003. |
[12] | WANG Z F, WANG S, MA C W, et al. The prediction of homogenized effective properties of continuous fiber composites based on a deep transfer learning approach[J]. Composites Science and Technology, 2025, 262: 111050. DOI: 10.1016/j.compscitech.2025.111050. |
[13] | HUANG S, SUN T, WANG S H, et al. The application of genetic algorithm in the structural optimization of permanent magnet synchronous motor[M]//The Proceedings of the 9th Frontier Academic Forum of Electrical Engineering. Singapore: Springer Singapore, 2021: 831-839. DOI: 10.1007/978-981-33-6609-1_76. |
[14] | JIN Y X, WANG A Y, WANG T, et al. Optimal design of loss of permanent magnet synchronous motor based on particle swarm optimization[C]//2018 IEEE Student Conference on Electric Machines and Systems. December 14-16, 2018, Huzhou, China. IEEE, 2018: 1-4. DOI: 10.1109/SCEMS.2018.8624873. |
[15] | SUN M X, XU Y L. Comprehensive optimization design of axial-flux permanent magnet synchronous machine for large-capacity flywheel energy storage system[C]//2024 IEEE 21st Biennial Conference on Electromagnetic Field Computation (CEFC). June 2-5, 2024, Jeju, Korea, Republic of. IEEE, 2024: 1-2. DOI: 10.1109/CEFC61729.2024.10585944. |
[16] | 朱迪, 赵杨阳, 艾邓鑫, 等. 基于遗传算法的飞轮储能电机多工况效率优化[J]. 储能科学与技术, 2024, 13(10): 3582-3592. DOI: 10.19799/j.cnki.2095-4239.2024.0249. |
ZHU D, ZHAO Y Y, AI D X, et al. Efficiency optimization of PMSM in flywheel energy storage under multiple working conditions based on genetic algorithm[J]. Energy Storage Science and Technology, 2024, 13(10): 3582-3592. DOI: 10.19799/j.cnki.2095-4239.2024.0249. | |
[17] | ZOLFAGHARI M, TAHER S A, MUNUZ D V. Neural network-based sensorless direct power control of permanent magnet synchronous motor[J]. Ain Shams Engineering Journal, 2016, 7(2): 729-740. DOI: 10.1016/j.asej.2016.01.002. |
[18] | SHANTHI R, KALYANI S, DEVIE P M. RETRACTED ARTICLE: Design and performance analysis of adaptive neuro-fuzzy controller for speed control of permanent magnet synchronous motor drive[J]. Soft Computing, 2021, 25(2): 1519-1533. DOI: 10.1007/s00500-020-05236-5. |
[19] | ZHANG H Y. Modeling permanent magnet synchronous motor system in electrical automation engineering based on adaptive neuro-fuzzy inference system[J]. Advanced Materials Research, 2013, 676: 297-301. DOI: 10.4028/www.scientific.net/amr.676.297. |
[20] | 邹晋彬, 易辉阳, 张鹏辉, 等. 基于Q-MPC的径向四自由度磁悬浮轴承控制策略[J]. 轴承, 2024(7): 36-44. DOI: 10.19533/j.issn1000-3762.2024.07.005. |
ZOU J B, YI H Y, ZHANG P H, et al. Control strategy of radial four degree of freedom magnetic bearings based on Q-MPC[J]. Bearing, 2024(7): 36-44. DOI: 10.19533/j.issn1000-3762.2024. 07.005. | |
[21] | KANG C F, LI K Y. Research on intelligent control system of permanent magnet motor for high-speed flywheel energy storage system based on deep learning[J]. Journal of Physics: Conference Series, 2024, 2729(1): 012001. DOI: 10.1088/1742-6596/2729/1/012001. |
[22] | FITTRO R L, PANG D C, ANAND D K. Neural network controller development for a magnetically suspended flywheel energy storage system[C]//Proceedings of the NASA Langley Research Center, Second International Symposium on Magnetic Suspension Technology, Part 1, F, 1994. |
[23] | ZHANG W Y, GUO F. Research on sensorless technology of a magnetic suspension flywheel battery based on a genetic BP neural network[J]. Actuators, 2025, 14(4): 174. DOI: 10.3390/act14040174. |
[24] | ZHANG W Y, JI H T. High stability control of a magnetic suspension flywheel based on SA-BPNN and CNN+LSTM+ATTENTION[J]. Machines, 2024, 12(10): 710. DOI: 10.3390/machines12100710. |
[25] | KANASE-PATIL A B, KALDATE A P, LOKHANDE S D, et al. A review of artificial intelligence-based optimization techniques for the sizing of integrated renewable energy systems in smart cities[J]. Environmental Technology Reviews, 2020, 9(1): 111-136. DOI: 10.1080/21622515.2020.1836035. |
[26] | ZHAO D, SUN S Y, MOHAMMADZADEH A, et al. Adaptive intelligent model predictive control for microgrid load frequency[J]. Sustainability, 2022, 14(18): 11772. DOI: 10.3390/su141811772. |
[27] | CHENG B, ZHANG W, YE M, et al. Flywheel energy storage control based on recurrent fuzzy neural network[C]//2010 8th World Congress on Intelligent Control and Automation. July 7-9, 2010, Jinan. IEEE, 2010: 4584-4589. DOI: 10.1109/WCICA. 2010.5554118. |
[28] | 王宁, 曲建真, 张志强, 等. 基于深度强化学习的轨交飞轮储能系统能量管理[J]. 科技创新与应用, 2025, 15(2): 30-33, 38. DOI: 10.19981/j.CN23-1581/G3.2025.02.006. |
WANG N, QU J Z, ZHANG Z Q, et al. Energy management of rail flywheel energy storage system based on deep reinforcement learning[J]. Technology Innovation and Application, 2025, 15(2): 30-33, 38. DOI: 10.19981/j.CN23-1581/G3.2025.02.006. | |
[29] | ZHOU J, JIA Y B, SUN C Y. Flywheel energy storage system controlled using tube-based deep Koopman model predictive control for wind power smoothing[J]. Applied Energy, 2025, 381: 125117. DOI: 10.1016/j.apenergy.2024.125117. |
[30] | 李佳玉. 基于多智能体协同的飞轮储能系统先进控制研究[D]. 北京: 华北电力大学, 2024. DOI: 10.27140/d.cnki.ghbbu.2024.000086. |
LI J Y. Research on advanced control of flywheel energy storage system based on multi-agent collaboration[D]. Beijing: North China Electric Power University, 2024. DOI: 10.27140/d.cnki.ghbbu.2024.000086. | |
[31] | 季雯雯. 基于LSTM超短期风功率预测的风储联合系统一次调频研究[D]. 北京: 华北电力大学, 2024. DOI: 10.27140/d.cnki.ghbbu.2024.000572. |
JI W W. Research on frequency regulation of wind-storage joint system based on LSTM ultra-short-term wind power prediction[D]. Beijing: North China Electric Power University, 2024. DOI: 10.27140/d.cnki.ghbbu.2024.000572. | |
[32] | 谢黎龙, 李勇汇, 范培潇, 等. 基于深度强化学习的孤立多微电网系统频率和电压综合控制[J]. 电力自动化设备, 2024, 44(6): 118-126. DOI: 10.16081/j.epae.202311013. |
XIE L L, LI Y H, FAN P X, et al. Deep reinforcement learning-based integrated frequency and voltage control for isolated multi-microgrid system[J]. Electric Power Automation Equipment, 2024, 44(6): 118-126. DOI: 10.16081/j.epae.202311013. | |
[33] | LEI M Z, MENG K, FENG H N, et al. Flywheel energy storage controlled by model predictive control to achieve smooth short-term high-frequency wind power[J]. Journal of Energy Storage, 2023, 63: 106949. DOI: 10.1016/j.est.2023.106949. |
[34] | WANG J Y, LYU C H, BAI Y L, et al. Optimal scheduling strategy for hybrid energy storage systems of battery and flywheel combined multi-stress battery degradation model[J]. Journal of Energy Storage, 2024, 99: 113208. DOI: 10.1016/j.est.2024.113208. |
[35] | LAI H T T, TRUNG H D, LAI K L, et al. Enhancing grid stability through predictive control and fuzzy neural networks in flywheel energy storage systems integration[J]. International Journal of Modern Physics B, 2025, 39(6): 2540020. DOI: 10.1142/s021797922540020x. |
[36] | 魏乐, 李承霖, 房方, 等. 小样本下基于改进麻雀算法优化卷积神经网络的飞轮储能系统损耗[J]. 电网技术, 2025, 49(1): 366-372. DOI: 10.13335/j.1000-3673.pst.2023.2001. |
WEI L, LI C L, FANG F, et al. Optimization of convolutional neural network based on improved sparrow algorithm for flywheel energy storage system loss in small sample[J]. Power System Technology, 2025, 49(1): 366-372. DOI: 10.13335/j.1000-3673.pst.2023.2001. | |
[37] | PATHAK P K, YADAV A K, PADMANABAN S, et al. Fractional cascade LFC for distributed energy sources via advanced optimization technique under high renewable shares[J]. IEEE Access, 2022, 10: 92828-92842. |
[38] | SHUBHAM, ROY S P, MEHTA R K, et al. A novel application of jellyfish search optimisation tuned dual-stage (1+PI)TID controller for microgrid employing electric vehicle[J]. International Journal of Ambient Energy, 2022, 43(1): 8408-8427. DOI: 10.1080/01430750.2022.2097952. |
[39] | BHAVANISANKAR C, SUDHA K R. An adaptive technique to control the load frequency of hybrid distributed generation systems[J]. Soft Computing, 2019, 23(23): 12385-12400. DOI: 10.1007/s00500-019-03779-w. |
[40] | HUYNH V V, NAQVI S, NGUYEN B L, et al. Robust super-twisting algorithm-based single-phase sliding mode frequency controller in power systems integrating wind turbines and energy storage systems[J]. Scientific Reports, 2025, 15: 19740. DOI: 10.1038/s41598-025-01407-2. |
[41] | ÇELIK E, ÖZTÜRK N, HOUSSEIN E H. Improved load frequency control of interconnected power systems using energy storage devices and a new cost function[J]. Neural Computing and Applications, 2023, 35(1): 681-697. DOI: 10.1007/s00521-022-07813-1. |
[42] | 魏乐, 季雯雯, 刘渝斌, 等. 基于长短期记忆神经网络超短期风功率预测的风储联合系统一次调频[J/OL]. 现代电力, 2025: 1-14. (2025-05-07). https://link.cnki.net/doi/10.19725/j.cnki.1007-2322.2024.0057. |
WEI L, JI W W, LIU Y B, et al. Primary frequency regulation strategy for a wind-storage-joint system based on LSTM ultra-short-term power generation prediction[J/OL]. Modern Electric Power, 2025: 1-14. (2025-05-07). https://link.cnki.net/doi/10.19725/j.cnki.1007-2322.2024.0057. | |
[43] | 颜廷鑫. 飞轮储能径向轴承的状态检测与故障诊断研究[D]. 秦皇岛: 燕山大学, 2020. DOI: 10.27440/d.cnki.gysdu.2020.000745. |
YAN T X. Study on state detection and fault diagnosis of radial bearing for flying wheel energy storage[D]. Qinhuangdao: Yanshan University, 2020. DOI: 10.27440/d.cnki.gysdu.2020.000745. | |
[44] | 吴朝辉. 飞轮储能系统故障诊断及智能预警方法研究[D]. 北京: 华北电力大学, 2023. DOI: 10.27140/d.cnki.ghbbu.2023.001509. |
WU C H. Research on fault diagnosis and intelligent early warning method of flywheel energy storage system[D]. Beijing: North China Electric Power University, 2023. DOI: 10.27140/d.cnki.ghbbu.2023.001509. | |
[45] | HE D Q, LIU C Y, JIN Z Z, et al. Fault diagnosis of flywheel bearing based on parameter optimization variational mode decomposition energy entropy and deep learning[J]. Energy, 2022, 239: 122108. DOI: 10.1016/j.energy.2021.122108. |
[46] | NI Q, JI J C, FENG K, et al. A fault information-guided variational mode decomposition (FIVMD) method for rolling element bearings diagnosis[J]. Mechanical Systems and Signal Processing, 2022, 164: 108216. DOI: 10.1016/j.ymssp.2021.108216. |
[47] | WANG H L, WU F, ZHANG L. Application of variational mode decomposition optimized with improved whale optimization algorithm in bearing failure diagnosis[J]. Alexandria Engineering Journal, 2021, 60(5): 4689-4699. DOI: 10.1016/j.aej.2021.03.034. |
[1] | Bowen LI, Xiankui WEN, Qiang FAN, Tingyun GU, Zhengjun SHI, Xiaoyin ZHANG. Experimental study on heat dissipation through circulation in the hollow shaft of MW-class flywheel motor rotor [J]. Energy Storage Science and Technology, 2025, 14(8): 2925-2931. |
[2] | Xiankui WEN, Bowen LI, Zhengjun SHI, Huayang YE, Lingrong PANG, Xiaoyin ZHANG. Analysis of electromagnetic and thermal characteristics of magnetic bearings in flywheel energy storage systems [J]. Energy Storage Science and Technology, 2025, 14(8): 2932-2941. |
[3] | Zhaoqin SUN, Ke LI, Gaoxian DU, Chen HU, Meng NIU, Zhen ZHU. Fast frequency response and stable control of multi-port energy router [J]. Energy Storage Science and Technology, 2025, 14(8): 2970-2982. |
[4] | Caiying XU, Yuzhen TANG, Qiuyu LI, Haoyue YANG, Yang CHEN, Hengzhao YANG. Supercapacitor energy storage systems for frequency regulation applications in power systems [J]. Energy Storage Science and Technology, 2025, 14(8): 3078-3089. |
[5] | Rengaowa SA, Chaohui WU, Zelong NI, Yue ZHANG, Xinjian JIANG, Jianyu TIAN. A variable-parameter PID active power control strategy of inertial flywheel based on reinforcement learning [J]. Energy Storage Science and Technology, 2025, 14(5): 1982-1990. |
[6] | Yifei WANG, Fan XU, Liang WANG, Xingjian DAI, Yujie XU, Haisheng CHEN. Analysis and design on stator heat dissipation of motor in flywheel energy storage system [J]. Energy Storage Science and Technology, 2025, 14(5): 1946-1953. |
[7] | Qingxiang XU, Wei TENG, Run QIN, Shunyi SONG, Yibing LIU, Shuangyin LIANG. Energy management and control strategy for grid-connected frequency regulation flywheel energy storage systems [J]. Energy Storage Science and Technology, 2025, 14(5): 2013-2022. |
[8] | Song HAN. Research on fault prediction and diagnosis methods for energy storage systems based on big data and artificial intelligence [J]. Energy Storage Science and Technology, 2025, 14(5): 2114-2116. |
[9] | Shiming LI. Application of artificial Intelligence in the fault detection of energy storage system [J]. Energy Storage Science and Technology, 2025, 14(4): 1698-1700. |
[10] | Wenqi DONG, Donghui ZHANG, Yifan CAO, Zhaoxuan NING, Xinjian JIANG, Ming LI, Xuewei SHI. The control strategies concerning the new type inertia flywheel and high-speed flywheel involved in the grid inertia response and primary frequency modulation [J]. Energy Storage Science and Technology, 2025, 14(3): 1224-1233. |
[11] | Lei WANG, Ruitao YAN, Fan ZHANG, Na YAN, Fen YUE, Xu FU, Mengchen LIU, Yunzhang YANG. Economic analysis of independent energy-storage project participation based on the optimization model of in-spot power market and primary frequency regulation markets [J]. Energy Storage Science and Technology, 2025, 14(2): 834-845. |
[12] | Yuchen GAO, Weilin LI, Xiang CHEN, Yuhang YUAN, Yilin NIU, Qiang ZHANG. A perspective on DeepSeek application in energy storage research [J]. Energy Storage Science and Technology, 2025, 14(2): 467-478. |
[13] | Yuhang YUAN, Yuchen GAO, Jundong ZHANG, Yanbin GAO, Chaolong WANG, Xiang CHEN, Qiang ZHANG. The application of large language models in energy storage research [J]. Energy Storage Science and Technology, 2024, 13(9): 2907-2919. |
[14] | Jiahui HUANG, Zhufang KUANG. The forefront of the integration of artificial intelligence and energy storage technologies [J]. Energy Storage Science and Technology, 2024, 13(9): 3161-3181. |
[15] | Junyu JIAO, Quanquan ZHANG, Ningbo CHEN, Jiyu WANG, Qiudi LU, Haohao DING, Peng PENG, Xiaohe SONG, Fan ZHANG, Jiaxin ZHENG. Development and applications of an intelligent big data analysis platform for batteries [J]. Energy Storage Science and Technology, 2024, 13(9): 3198-3213. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||