Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (7): 2202-2210.doi: 10.19799/j.cnki.2095-4239.2023.0333
Previous Articles Next Articles
Maosong FAN1(), Mengmeng GENG1, Guangjin ZHAO2, Kai YANG1(), Fangfang WANG2, Hao LIU1
Received:
2023-05-09
Revised:
2023-06-02
Online:
2023-07-05
Published:
2023-07-25
Contact:
Kai YANG
E-mail:fanmaosong3@epri.sgcc.com.cn;yangkai@epri.sgcc.com.cn
CLC Number:
Maosong FAN, Mengmeng GENG, Guangjin ZHAO, Kai YANG, Fangfang WANG, Hao LIU. Research on battery sorting technology for echelon utilization based on multifrequency impedance[J]. Energy Storage Science and Technology, 2023, 12(7): 2202-2210.
1 | 周玉莲, 钱洋杰, 褚晓锐, 等. 退役动力电池不一致性的分选办法[J]. 电子世界, 2021(24): 206-207. |
ZHOU Y L, QIAN Y J, CHU X R, et al. Separation method of inconsistency of retired power battery[J]. Electronics World, 2021(24): 206-207. | |
2 | 王帅. 退役动力电池模组一致性分选与重组研究[D]. 北京: 华北电力大学, 2021. |
WANG S. Research on sorting and grouping for second-use of retired battery modules[D]. Beijing: North China Electric Power University, 2021. | |
3 | WANG Y H, HUANG H H, WANG H X. Rapid-regroup strategy for retired batteries based on short-time dynamic voltage and electrochemical impedance spectroscopy[J]. Journal of Energy Storage, 2023, 63: doi: 10.1016/j.est.2023.107102. |
4 | 刘俊华, 刘翠翠, 李程, 等. 电动汽车退役锂电池一致性快速分选方法研究[J]. 上海节能, 2020(7): 753-758. |
LIU J H, LIU C C, LI C, et al. Research on rapid separation method for retired lithium battery consistency of electric vehicle[J]. Shanghai Energy Conservation, 2020(7): 753-758. | |
5 | 李扬, 王军. 退役锂离子电池筛选分类方法设计与分析[J]. 电池, 2020, 50(4): 403-407. |
LI Y, WANG J. Design and analysis of screening and classification methods for retired Li-ion battery[J]. Battery Bimonthly, 2020, 50(4): 403-407. | |
6 | WEI Z X, HAN X J, LI J R. State of health assessment for echelon utilization batteries based on deep neural network learning with error correction[J]. Journal of Energy Storage, 2022, 51: doi: 10.1016/j.est.2022.104428. |
7 | 程郅皓. 基于内阻的退役电池健康状态评估与筛选成组[D]. 大连: 大连理工大学, 2021. |
CHENG Z H. Assessment of the state of health of retired lithium-ion batteries and screening into modules based on internal resistance[D]. Dalian: Dalian University of Technology, 2021. | |
8 | 李济飞. 电动汽车退役电池剩余容量估计与分选方法研究[D]. 广州: 华南理工大学, 2020. |
LI J F. Research on residual cpacity estimation and sorting method of decommissioning batteries of electric vehicles[D]. Guangzhou: South China University of Technology, 2020. | |
9 | 薛金花, 陶以彬, 杨波, 等. 基于老化机理分析退役磷酸铁锂电池分选方法[J]. 电源技术, 2020, 44(5): 660-665. |
XUE J H, TAO Y B, YANG B, et al. Screening method of retired LiFePO4 batteries based on aging mechanism analysis[J]. Chinese Journal of Power Sources, 2020, 44(5): 660-665. | |
10 | 李洪雷. 基于IC曲线的退役电池容量估计和一致性筛选[D]. 大连: 大连理工大学, 2021. |
LI H L. Capacity estimation and consistency screening of retired batteries based on IC curve[D]. Dalian: Dalian University of Technology, 2021. | |
11 | CHEN Z H, DENG Y L, LI H L, et al. An efficient regrouping method of retired lithium-ion iron phosphate batteries based on incremental capacity curve feature extraction for echelon utilization[J]. Journal of Energy Storage, 2022, 56: doi: 10.1016/j.est.2022.105917. |
12 | LAI X, DENG C, LI J Q, et al. Rapid sorting and regrouping of retired lithium-ion battery modules for echelon utilization based on partial charging curves[J]. IEEE Transactions on Vehicular Technology, 2021, 70(2): 1246-1254. |
13 | 骆凡, 黄海宏, 王海欣. 基于短时脉冲放电与电化学阻抗谱的退役动力电池快速分选与重组方法[J]. 仪器仪表学报, 2022, 43(1): 229-238. |
LUO F, HUANG H H, WANG H X. A fast screening and recombinant method based on short-time pulse discharge and electrochemical impedance spectroscopy for decommissioned power batteries[J]. Chinese Journal of Scientific Instrument, 2022, 43(1): 229-238. | |
14 | LUO F, HUANG H H, WANG H X. A fast screening and recombinant method based on short-time pulse discharge and electrochemical impedance spectroscopy for decommissioned power batteries[J]. Journal of Electrochemical Energy Conversion and Storage, 2022, 19(2): doi: 10.1115/1.4053866. |
15 | 王红美, 刘建利. 基于K-means聚类的退役动力电池梯次利用分选方法[J]. 电子技术与软件工程, 2021(7): 225-226. |
WANG H M, LIU J L. Sorting method of retired power batteries based on K-means clustering[J]. Electronic Technology & Software Engineering, 2021(7): 225-226. | |
16 | 郑岳久, 李家琦, 朱志伟, 等. 基于快速充电曲线的退役锂电池模块快速分选技术[J]. 电网技术, 2020, 44(5): 1664-1673. |
ZHENG Y J, LI J Q, ZHU Z W, et al. Rapid classification based on fast charging curves for reuse of retired lithium-ion battery modules[J]. Power System Technology, 2020, 44(5): 1664-1673. | |
17 | 周宇欣. 基于数据挖掘的退役锂离子电池分选方法研究[D]. 北京: 北方工业大学, 2021. |
ZHOU Y X. Study on sorting method of retired lithium-ion battery based on data mining[D]. Beijing: North China University of Technology, 2021. | |
18 | 李程, 李新周, 刘俊华, 等. 基于概率密度分析法快速筛选退役电池模组[J]. 电工技术, 2021(1): 5-7, 9. |
LI C, LI X Z, LIU J H, et al. Fast screening method of retired battery module based on probability density function[J]. Electric Engineering, 2021(1): 5-7, 9. | |
19 | 顾正建, 秦志光, 杨智皋, 等. 基于容量增量分析的退役LiFePO4电池分选方法[J]. 电源技术, 2021, 45(12): 1566-1568, 1659. |
GU Z J, QIN Z G, YANG Z G, et al. Method to classify retired LiFePO4 battery based on incremental capacity analysis[J]. Chinese Journal of Power Sources, 2021, 45(12): 1566-1568, 1659. | |
20 | 姜舟. 梯次利用电池筛选及综合性能评估方法研究[D]. 北京: 北京交通大学, 2021. |
JIANG Z. Research on the method of second use battery screening and comprehensive performance evaluation[D]. Beijing: Beijing Jiaotong University, 2021. | |
21 | 张瑛. 基于数据驱动的退役动力电池快速分选及健康状态估计[D]. 济南: 山东大学, 2021. |
ZHANG Y. Research on fast screening and state of health estimation of retired power batteries based on data driven method[D]. Ji'nan: Shandong University, 2021. | |
22 | LI C B, WANG N B, LI W, et al. Regrouping and echelon utilization of retired lithium-ion batteries based on a novel support vector clustering approach[J]. IEEE Transactions on Transportation Electrification, 2022, 8(3): 3648-3658. |
23 | ZHOU Z K, DUAN B, KANG Y Z, et al. An efficient screening method for retired lithium-ion batteries based on support vector machine[J]. Journal of Cleaner Production, 2020, 267: doi: 10. 1016/j.jclepro.2020.121882. |
[1] | Yubo ZHANG, Youyuan WANG, Dongning HUANG, Ziyi WANG, Weigen CHEN. Prognostic method of lithium-ion battery lifetime degradation under various working conditions [J]. Energy Storage Science and Technology, 2023, 12(7): 2238-2245. |
[2] | Qinpei CHEN, Xuehui WANG, Wenzhong MI. Experiential study on the toxic and explosive characteristics of thermal runaway gas generated in electric-vehicle lithium-ion battery systems [J]. Energy Storage Science and Technology, 2023, 12(7): 2256-2262. |
[3] | Wenda ZAN, Rui ZHANG, Fei DING. Development and application of electrochemical models for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2302-2318. |
[4] | Hongsheng GUAN, Cheng QIAN, Binghui XU, Bo SUN, Yi REN. SAM-GRU-based fusion neural network for SOC estimation in lithium-ion batteries under a wide range of operating conditions [J]. Energy Storage Science and Technology, 2023, 12(7): 2229-2237. |
[5] | Yi WANG, Xuebing CHEN, Yuanxi WANG, Jieyun ZHENG, Xiaosong LIU, Hong LI. Overview of multilevel failure mechanism and analysis technology of energy storage lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2079-2094. |
[6] | Shuqin LIU, Xiaoyan WANG, Zhendong ZHANG, Zhenxia DUAN. Experimental and simulation research on liquid-cooling system of lithium-ion battery packs [J]. Energy Storage Science and Technology, 2023, 12(7): 2155-2165. |
[7] | Qingsong ZHANG, Fangwei BAO, Jiangjao NIU. Risk analysis method of thermal runaway gas explosion in lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2263-2270. |
[8] | Guangjin ZHAO, Bowen LI, Yuxia HU, Ruifeng DONG, Fangfang WANG. Overview of the echelon utilization technology and engineering application of retired power batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2319-2332. |
[9] | Fang LI, Yongjun MIN, Yong ZHANG. Review of key technology research on the reliability of power lithium batteries based on big data [J]. Energy Storage Science and Technology, 2023, 12(6): 1981-1994. |
[10] | Yuxin CHEN, Jiamu YANG, Dongbo LI, Cheng LIAN, Honglai LIU. Numerical simulation of the vacuum drying process of cylindrical lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(6): 1957-1967. |
[11] | Luhao HAN, Ziyang WANG, Xiaolong HE, Chunshan HE, Xiaolong SHI, Bin YAO. The effect of water mist strategies on thermal runaway fire suppression of large-capacity NCM lithium-ion battery [J]. Energy Storage Science and Technology, 2023, 12(5): 1664-1674. |
[12] | Jintao LI, Yue MU, Jing WANG, Jingyi QIU, Hai MING. Investigation of the structural evolution and interface behavior in cathode materials for Li-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1636-1654. |
[13] | Linze LI, Xiangwen ZHANG. SOH estimation for lithium-ion batteries based on combination of frequency impedance characteristics [J]. Energy Storage Science and Technology, 2023, 12(5): 1705-1712. |
[14] | Yongli YI, Ran YU, Wu LI, Yi JIN, Zheren DAI. Preparation of Mo, Al-doped Li7La3Zr2O12-based composite solid electrolyte and performance of all-solid-state batterys [J]. Energy Storage Science and Technology, 2023, 12(5): 1490-1499. |
[15] | Ni YANG, Yuefeng SU, Lian WANG, Ning LI, Liang MA, Chen ZHU. Research progress of focused ion beam microscopy in lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(4): 1283-1294. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||