Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (4): 1277-1292.doi: 10.19799/j.cnki.2095-4239.2024.0107
Previous Articles Next Articles
Hangyu SUN1(), Zhuohua LI2, Yali WANG1, Xiaoyan LI1, Yunfeng FU1, Guoshan DU1, Songxuan CHEN1
Received:
2024-02-04
Revised:
2024-03-07
Online:
2024-04-26
Published:
2024-04-22
Contact:
Hangyu SUN
E-mail:sunhy@enfi.com.cn
CLC Number:
Hangyu SUN, Zhuohua LI, Yali WANG, Xiaoyan LI, Yunfeng FU, Guoshan DU, Songxuan CHEN. Research progress of model simulation of direct internal reforming in solid oxide fuel cells[J]. Energy Storage Science and Technology, 2024, 13(4): 1277-1292.
Fig. 3
(a) the temperature distribution of the x=1 mm cross-section inside SOFC (inlet fuel and air temperature of 973 K, output voltage of 0.8 V, cathode inlet fuel flow rate of 1 m/s, anode inlet fuel flow rate of 0.5 m/s)[68], (b) the current density distribution at the interface between the cathode and electrolyte of SOFC [68], (c) the temperature distribution along the length of the battery channel and electrolyte [68], and (d) the U-shaped flow channel diagram and oxygen mole fraction distribution on the air side of the battery stack [10]; (e) Schematic diagram of Z-shaped flow channel on the air side of the battery stack and distribution of oxygen mole fraction[10]"
Table 5
CH4 reforming reaction rate equation and WGS rate expression"
参考文献 | 阳极 | 动力学类型 | 动力学表达式 | 温度/℃ | S/C | 动力学参数 |
---|---|---|---|---|---|---|
Lee等[ | Ni/YSZ金属陶瓷 | FO | 800~1000 | 2~7.4 | E=17.8~23.5 kJ/mol,k0=490~4775 mol/(g·h) | |
Achenbach等[ | Ni/ZrO2金属陶瓷 | 700~940 | 2.6~8 | E=82 kJ/mol,k0=42720 mol/(s·m2·MPa) | ||
Belyaev等[ | Ni/ZrO2/CeO2 | 800~850 | 2~4 | E=163 kJ/mol | ||
Avetisov等[ | Ni/MgO | 500~650 | E=99.77 kJ/mol,k0=2.415×107 | |||
Parsons等[ | Ni 金属陶瓷 | 加权 | 960 | 3 | k=2.4×10-3 mol/(s·bar1.25) | |
Fan等[ | Ni/GDC | 650~750 | 1.5~2.45 | E=63~88 kJ/mol,k0=1.1~18.9 mol/(s·bar0.6) | ||
Ahmed等[ | Ni/YSZ | 854~907 | 1.53~2.45 | E=95 kJ/mol,k0=8542 mol/(s·m2·bar0.5) | ||
Ni/改良的YSZ | 838~922 | 1.4~3 | E=208 kJ/mol,k0=3.6×108 mol/(s·m2·bar0.6) | |||
Timmermann等[ | Ni/CGO | 800,950 | 0~3 | k0=4.05×10-0.5 mol/(s·m2·Pa1.19) | ||
Ni/YSZ | E=26.3 kJ/mol | |||||
Yakabe等[ | Ni/YSZ | 1000 | 2 | E=1.91×105 kJ/mol,k0=1.09×1010 mol/kg,Da=930 kg/m3 | ||
Johnsen等[ | NiO/YSZ | 680~1027 | 1.5~2.5 | E=57.84 kJ/mol,k0=1.75 | ||
Sciazko等[ | NiO/YSZ | 550~750 | 3.0~6.0 | E=121.00 kJ/mol,k0=6.472×10-3 | ||
Chen等[ | Ni/Al2O3 | 500~700 | 1.5~4.5 | E=81.69 kJ/mol,k0=316.6 | ||
Fu等[ | 含稀土金属的Ni | 400~450 | E=151.46 kJ/mol,k0=168.1 kg/(m2·s·bar-0.8) | |||
Timmermann等[ | Ni/YSZ金属陶瓷 | LHHW | 600~850 | 1~3 | EA=60 kJ/mol (600~750 ℃),EA=30 kJ/mol (750~850 ℃) | |
Souentie等[ | Ni/GDC 和 Au/Ni/GDC | 800~900 | 0.25,1 | E=96~117 kJ/mol,ka=(15~45)×10-6 | ||
Xu等[ | Ni/MgAl2O4 | 500~550 | 3~5 | E=240 kJ/mol,k0=1.17×1015 bar0.5·mol/(kg·s) | ||
Bebelis等[ | Ni/YSZ金属陶瓷 | 800~900 | 0.2 | E=230 kJ/mol | ||
Hou等[ | Ni/α Al2O3 | 475~550 | 4~7 | E=209.20 kJ/mol,k0=5.922×108 | ||
Nakagawa等[ | Ni/YSZ/CeO2 | 700~1000 | 2~8 | A1=400~612 mol/(s·m2),E1=49 kJ/mol | ||
A2=3.01×10-4~4.96×10-4 kPa-1,E2=-45 kJ/mol | ||||||
A3=0.18~0.28 kPa-1,E3=7 kJ/mol | ||||||
Dicks等[ | Ni/YSZ阳极 | 700~1000 | 1~3 | E=135 kJ/mol,k0=210 mol/(s·cm2·MPa) | ||
Fu等[ | 含稀土金属的Ni | PL | 400~450 | E=78.57 kJ/mol,k0=0.2097 kg/(m2·s·bar-2.3) | ||
Hou等[ | Ni/α Al2O3 | LHHW | 475~550 | 4~7 | E=15.40 kJ/mol,k0=6.028×10-4 | |
Xu等[ | Ni/MgAl2O4 | LHHW | 500~550 | 3~5 | E=67.130 kJ/mol,k0=5.43×104 MPa·mol/(kg·s) |
Table 6
Hydrocarbon reforming reactions and their respective reaction heats"
燃料名称 | 反应式 | 反应热/(kJ/mol) | 参考文献 |
---|---|---|---|
甲醇 | CH3OH→2H2+CO | 91 | [ |
CH3OH+H2O→3H2+CO2 | 50 | ||
乙醇 | C2H5OH+H2O→4H2+2CO | 239.5 | [ |
C2H5OH+3H2O→6H2+2CO2 | 173.5 | ||
正丁烷 | C4H10+4H2O→4CO+9H2 | 649.9 | [ |
C4H10+8H2O→4CO2+13H2 | 485.3 | ||
辛烷 | C8H18+8H2O→8CO+17H2 | 1310 | [ |
C8H18+16H2O→8CO2+25H2 | 1684 |
Table 7
Reaction kinetics parameters of methanol and ethanol steam reforming"
动力学 | 参考文献 | 阳极 | 动力学类型 | 动力学表达式 | 温度/℃ | S/C | 动力学参数 |
---|---|---|---|---|---|---|---|
甲醇蒸气重整动力学 | Purnama等[ | CuO/ZnO/Al2O3 | PL | 230~300 | 1 | E=76 kJ/mol,k0=8.8×108 s-1·g-1 | |
Samms等[ | CuO/ZnO/Al2O4 | PL | 225,250 | 1.16,5.15 | E=74.164 kJ/mol,k0=6370 mol/(s·bar72) | ||
Ilinich等[ | CuO/ZnO/Al2O5 | PL | 230~320 | 1.13 | E=54.27 kJ/mol,k0=34.476 mol/(s·bar72) | ||
Jiang等[ | CuO/ZnO/Al2O6 | PL | 170~260 | — | E=105 kJ/mol,k0=5.31×109 mol/(kg·s·kPa0.296) | ||
Jiang等[ | CuO/ZnO/Al2O7 | LHHW | 127~327 | — | E=110 kJ/mol,k0=34.476 mol/(s·bar72) | ||
乙醇蒸气重整动力学 | Therdhianwong等[ | Ni/Al2O3 | PL | 400~650 | 0.26~10.73 | k=280075 | |
Afolabi等[ | Ni/Al2O3 | FO | 300~450 | 3 | E=48 kJ/mol,k0=13394 mol/(s·MPa·g) | ||
Tosti等[ | Pd/Ag | PL | 450 | 8.4~13 | E=4410 kJ/mol,k0=3.123×10-2 kmol0.57/(s-0.57·kg) | ||
Chen等[ | 镍基催化剂 | FO | 400~800 | 1~10 | E=130 kJ/mol,k0=7.98×10-10 mol/(s·m3) |
1 | RITCHIE H, ROSADO P, ROSER M. CO2 and greenhouse gas emissions[ED/OL]. [2023-05-07]. https://ourworldindata.org/co2-and-greenhouse-gas-emissions. |
2 | BREEZE P. Power generation technologies[M]. 3rd Ed. Newnes, 2019: 145-171. |
3 | SENGODAN S, LAN R, HUMPHREYS J, et al. Advances in reforming and partial oxidation of hydrocarbons for hydrogen production and fuel cell applications[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 761-780. |
4 | PARK S, GORTE R J, VOHS J M. Applications of heterogeneous catalysis in the direct oxidation of hydrocarbons in a solid-oxide fuel cell[J]. Applied Catalysis A: General, 2000, 200(1/2): 55-61. |
5 | ALI M, ELSAID K, WILBERFORCE T, et al. Environmental aspects of fuel cells: A review[J]. Science of the Total Environment, 2021, 752: 141803. |
6 | LAOSIRIPOJANA N, ASSABUMRUNGRAT S. Catalytic steam reforming of methane, methanol, and ethanol over Ni/YSZ: The possible use of these fuels in internal reforming SOFC[J]. Journal of Power Sources, 2007, 163(2): 943-951. |
7 | Intergovernmental Panel on Climate Change. Climate change 2007[M]. Cambridge: Cambridge University Press, 2007. |
8 | HASELI Y. Maximum conversion efficiency of hydrogen fuelcells[J]. International Journal of Hydrogen Energy, 2018, 43(18): 9015-9021. |
9 | VAN BIERT L, GODJEVAC M, VISSER K, et al. Dynamic modelling of a direct internal reforming solid oxide fuel cell stack based on single cell experiments[J]. Applied Energy, 2019, 250: 976-990. |
10 | 栾凯夫, 蔡长焜, 谢满意, 等. 固体氧化物燃料电池气流和热场的宏观尺度数值模拟研究进展[J]. 储能科学与技术, 2023, 12(9): 2985-3002. |
LUAN K F, CAI C K, XIE M Y, et al. Research progress of macroscale numerical simulation of fluid and thermal fields of solid oxide fuel cells[J]. Energy Storage Science and Technology, 2023, 12(9): 2985-3002. | |
11 | DWIVEDI S. Solid oxide fuel cell: Materials for anode, cathode and electrolyte[J]. International Journal of Hydrogen Energy, 2020, 45(44): 23988-24013. |
12 | FAKEEHA A H, ABD EL ALEEM F A, ETTOUNEY H M. The internal reforming fuel cells as a clean energy system for natural gas utilization in the Kingdom[J]. Journal of King Saud University-Engineering Sciences, 1995, 7: 171-188. |
13 | DICKS A L. Fuel cell systems explained[M]. Wiley, 2018. |
14 | SETTAR A, LEBAAL N, ABBOUDI S. Numerical analysis of catalytic-coated walls of an indirect internal reforming solid oxide fuel cell: Influence of catalyst coating distribution on the reformer efficiency[J]. Energy Conversion and Management, 2018, 176(8): 357-371. |
15 | DOKAMAINGAM P, ASSABUMRUNGRAT S, SOOTTITANTAWAT A, et al. Modeling of SOFC with indirect internal reforming operation: Comparison of conventional packed-bed and catalytic coated-wall internal reformer[J]. International Journal of Hydrogen Energy, 2009, 34(1): 410-421. |
16 | AHMED K, FOGER K. Kinetics of internal steam reforming of methane on Ni/YSZ-based anodes for solid oxide fuel cells[J]. Catalysis Today, 2000, 63(2/3/4): 479-487. |
17 | BODER M, DITTMEYER R. Catalytic modification of conventional SOFC anodes with a view to reducing their activity for direct internal reforming of natural gas[J]. Journal of Power Sources, 2006, 155(1): 13-22. |
18 | ABBAS S Z, DUPONT V, MAHMUD T. Kinetics study and modelling of steam methane reforming process over a NiO/Al2O3 catalyst in an adiabatic packed bed reactor[J]. International Journal of Hydrogen Energy, 2017, 42(5): 2889-2903. |
19 | HAMZA FAHEEM H, TANVEER H U, ABBAS S Z, et al. Comparative study of conventional steam-methane-reforming (SMR) and auto-thermal-reforming (ATR) with their hybrid sorption enhanced (SE-SMR & SE-ATR) and environmentally benign process models for the hydrogen production[J]. Fuel, 2021, 297: 120769. |
20 | BRUS G. Experimental and numerical studies on chemically reacting gas flow in the porous structure of a solid oxide fuel cells internal fuel reformer[J]. International Journal of Hydrogen Energy, 2012, 37(22): 17225-17234. |
21 | CHAUDHARY T N, MEHMOOD M, SALEEM U, et al. Modeling of thermal impacts in a single direct methane steam reforming solid oxide fuel cell[J]. Journal of Power Sources, 2020, 472: 228605. |
22 | DILLIG M, PLANKENBÜHLER T, KARL J. Thermal effects of planar high temperature heat pipes in solid oxide cell stacks operated with internal methane reforming[J]. Journal of Power Sources, 2018, 373: 139-149. |
23 | AHMED K, FӦGER K. Analysis of equilibrium and kinetic models of internal reforming on solid oxide fuel cell anodes: Effect on voltage, current and temperature distribution[J]. Journal of Power Sources, 2017, 343: 83-93. |
24 | LYU Z W, SHI W Y, HAN M F. Electrochemical characteristics and carbon tolerance of solid oxide fuel cells with direct internal dry reforming of methane[J]. Applied Energy, 2018, 228: 556-567. |
25 | BAE J. Fuel processor lifetime and reliability in solid oxide fuel cells[M]//Solid oxide fuel cell lifetime and reliability: Critical challenges in fuel cells. Elsevier, 2017. |
26 | YURKIV V. Reformate-operated SOFC anode performance and degradation considering solid carbon formation: A modeling and simulation study[J]. Electrochimica Acta, 2014, 143: 114-128. |
27 | CLARKE S H, DICKS A L, POINTON K, et al. Catalytic aspects of the steam reforming of hydrocarbons in internal reforming fuel cells[J]. Catalysis Today, 1997, 38(4): 411-423. |
28 | VASUDEVA K, MITRA N, UMASANKAR P, et al. Steam reforming of ethanol for hydrogen production: Thermodynamic analysis[J]. International Journal of Hydrogen Energy, 1996, 21(I): 13-18. |
29 | TSIAKARAS P, DEMIN A. Thermodynamic analysis of a solid oxide fuel cell system fuelled by ethanol[J]. Journal of Power Sources, 2001, 102(1/2): 210-217. |
30 | ASSABUMRUNGRAT S, PAVARAJARN V, CHAROJROCHKUL S, et al. Thermodynamic analysis for a solid oxide fuel cell with direct internal reforming fueled by ethanol[J]. Chemical Engineering Science, 2004, 59(24): 6015-6020. |
31 | RIENSCHE E, MEUSINGER J, STIMMING U, et al.Optimization of a 200 kW SOFC cogeneration power plant,Part II: Variation of the flowsheet[J]. Journal of Power Sources,1998,71:306–314. |
32 | VAN BIERT L, VISSER K, ARAVIND P V. A comparison of steam reforming concepts in solid oxide fuel cell systems[J]. Applied Energy, 2020, 264(2): 114748. |
33 | PETERS R, RIENSCHE E, CREMER P. Pre-reforming of natural gas in solid oxide fuel-cell systems[J]. Journal of Power Sources, 2000, 86(1/2): 432-441. |
34 | WONGCHANAPAI S, IWAI H, SAITO M, et al. Selection of suitable operating conditions for planar anode-supported direct-internal-reforming solid-oxide fuel cell[J]. Journal of Power Sources, 2012, 204: 14-24. |
35 | KANG Y W, LI J, CAO G Y, et al. A reduced 1D dynamic model of a planar direct internal reforming solid oxide fuel cell for system research[J]. Journal of Power Sources, 2009, 188(1): 170-176. |
36 | NAGATA S, MOMMA A, KATO T, et al. Numerical analysis of output characteristics of tubular SOFC with internal reformer[J]. Journal of Power Sources, 2001, 101(1): 60-71. |
37 | AGUIAR P, ADJIMAN C S, BRANDON N P. Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: Model-based steady-state performance[J]. Journal of Power Sources, 2004, 138(1/2): 120-136. |
38 | CHALUSIAK M, WROBEL M, MOZDZIERZ M, et al. A numerical analysis of unsteady transport phenomena in a direct internal reforming solid oxide fuel cell[J]. International Journal of Heat and Mass Transfer, 2019, 131: 1032-1051. |
39 | HO T X, KOSINSKI P, HOFFMANN A C, et al. Effects of heat sources on the performance of a planar solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2010, 35(9): 4276-4284. |
40 | AHMAD HAJIMOLANA S, HUSSAIN M A, DAUD W M A W, et al. Mathematical modeling of solid oxide fuel cells: A review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(4): 1893-1917. |
41 | WASSILJEWA A. Wärmeleitung in Gasgemischen[J]. Physikalische Zeitschrift, 1904,5: 737-742. |
42 | MASON E A, SAXENA S C. Approximate formula for the thermal conductivity of gas mixtures[J]. The Physics of Fluids, 1958, 1(5): 361-369. |
43 | MOZDZIERZ M, BRUS G, SCIAZKO A, et al. Towards a thermal optimization of a methane/steam reforming reactor[J]. Flow, Turbulence and Combustion, 2016, 97(1): 171-189. |
44 | QI Y T, HUANG B, LUO J L. Dynamic modeling of a finite volume of solid oxide fuel cell: The effect of transport dynamics[J]. Chemical Engineering Science, 2006, 61(18): 6057-6076. |
45 | SUWANWARANGKUL R, CROISET E, ENTCHEV E, et al. Experimental and modeling study of solid oxide fuel cell operating with syngas fuel[J]. Journal of Power Sources, 2006, 161(1): 308-322. |
46 | KAKAC S, PRAMUANJAROENKIJ A, ZHOU X Y. A review of numerical modeling of solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2007, 32(7): 761-786. |
47 | SEADER J D, HENLEY E J, ROPER D K. Separation process principles[M]. 3rd ed. John Wiley & Sons, Inc: 2011. |
48 | BAO C, JIANG Z Y, ZHANG X X. Modeling mass transfer in solid oxide fuel cell anode: I. Comparison between Fickian, Stefan-Maxwell and dusty-gas models[J]. Journal of Power Sources, 2016, 310: 32-40. |
49 | TODD B, YOUNG J B. Thermodynamic and transport properties of gases for use in solid oxide fuel cell modelling[J]. Journal of Power Sources, 2002, 110(1): 186-200. |
50 | KIM-LOHSOONTORN P, PRIYAKORN F, WETWATANA U, et al. Modelling of a tubular solid oxide fuel cell with different designs of indirect internal reformer[J]. Journal of Energy Chemistry, 2014, 23(2): 251-263. |
51 | HABERMAN B A, YOUNG J B. Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell[J]. International Journal of Heat and Mass Transfer, 2004, 47(17/18): 3617-3629. |
52 | KUPECKI J, MOTYLINSKI K, MILEWSKI J. Dynamic modelling of the direct internal reforming (DIR) of methane in 60-cell stack with electrolyte supported cells[J]. Energy Procedia, 2017, 105: 1700-1705. |
53 | NIKOOYEH K, JEJE A A, HILL J M. 3D modeling of anode-supported planar SOFC with internal reforming of methane[J]. Journal of Power Sources, 2007, 171(2): 601-609. |
54 | HETNARSKI R B, ESLAMI M R. Thermal stresses – Advanced theory and applications[M]. Dordrecht: Springer, 2009. |
55 | YAKABE H, OGIWARA T, HISHINUMA M, et al. 3-D model calculation for planar SOFC[J]. Journal of Power Sources, 2001, 102(1/2): 144-154. |
56 | TAKAHASHI Y, SHIRATORI Y, FURUTA S, et al. Thermo-mechanical reliability and catalytic activity of Ni-zirconia anode supports in internal reforming SOFC running on biogas[J]. Solid State Ionics, 2012, 225: 113-117. |
57 | ASINARI P, QUAGLIA M C, VON SPAKOVSKY M R, et al. Numerical simulations of reactive mixture flow in the anode layer of solid oxide fuel cells by the lattice Boltzmann method[C]// 8th Biennial ASME Conference on Engineering Systems Design and Analysis, 2006. |
58 | Trini M, Hauch A, DE ANGELIS S, et al. Comparison of microstructural evolution of fuel electrodes in solid oxide fuel cells and electrolysis cells[J]. Journal of Power Sources, 2020, 450: 227599. |
59 | 李强强, 薛顶喜, 马帅, 等. 固体氧化物燃料电池阳极微结构三维数值模拟[J]. 工程热物理学报, 2023, 44(5): 1309-1315. |
LI Q Q, XUE D X, MA S, et al. Three-dimensional numerical simulation of solid oxide fuel cell anode microstructure[J]. Journal of Engineering Thermophysics, 2023, 44(5): 1309-1315. | |
60 | SCIAZKO A, KOMATSU Y, NAKAMURA A, et al. 3D microstructures of solid oxide fuel cell Ni-YSZ anodes with carbon deposition[J]. Chemical Engineering Journal, 2023, 460:141680. |
61 | BRUS G, IWAI H, MOZDZIERZ M, et al. Combining structural, electrochemical, and numerical studies to investigate the relation between microstructure and the stack performance[J]. Journal of Applied Electrochemistry, 2017, 47(9): 979-989. |
62 | ANSELMI-TAMBURINI U, CHIODELLI G, ARIMONDI M, et al. Electrical properties of Ni/YSZ cermets obtained through combustion synthesis[J]. Solid State Ionics, 1998, 110(1/2): 35-43. |
63 | BRUS G, RACZKOWSKI P F, KISHIMOTO M, et al. A microstructure-oriented mathematical model of a direct internal reforming solid oxide fuel cell[J]. Energy Conversion and Management, 2020, 213: 112826. |
64 | MASON E A, MALINAUSKAS A P, EVANS R B III. Flow and diffusion of gases in porous media[J]. The Journal of Chemical Physics, 1967, 46(8): 3199-3216. |
65 | ZHU H Y, KEE R J, JANARDHANAN V M, et al. Modeling elementary heterogeneous chemistry and electrochemistry in solid-oxide fuel cells[J]. Journal of the Electrochemical Society, 2005, 152(12): A2427. |
66 | LI M, POWERS J D, BROUWER J. A finite volume SOFC model for coal-based integrated gasification fuel cell systems analysis[J]. Journal of Fuel Cell Science and Technology, 2010, 7(4): 1. |
67 | LI Q Q, CHAI D, WANG L, et al. Fine three-dimensional simulation of the heterogeneous anode of a solid oxide fuel cell with direct internal reforming[J]. Chemical Engineering Science, 2021, 242: 116747. |
68 | 赵婧. 甲烷直接内重整固体氧化物燃料电池模型研究[D]. 太原: 太原科技大学, 2023: 38-43. |
ZHAO J. Study on the model of solid oxide fuel cell with direct internal reforming of methane[D]. Taiyuan: Taiyuan University of Science and Technology, 2023: 38-43. | |
69 | CHAUDHARY T N, SALEEM U, CHEN B X. Reacting flow coupling with thermal impacts in a single solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2019, 44(16): 8425-8438. |
70 | TABISH A N, FAN L Y, FARHAT I, et al. Computational fluid dynamics modeling of anode-supported solid oxide fuel cells using triple-phase boundary-based kinetics[J]. Journal of Power Sources, 2021, 513: 230564. |
71 | LI J, CAO G Y, ZHU X J, et al. Two-dimensional dynamic simulation of a direct internal reforming solid oxide fuel cell[J]. Journal of Power Sources, 2007, 171(2): 585-600. |
72 | PARK J, LI P W, BAE J. Analysis of chemical, electrochemical reactions and thermo-fluid flow in methane-feed internal reforming SOFCs: Part I-Modeling and effect of gas concentrations[J]. International Journal of Hydrogen Energy, 2012, 37(10): 8512-8531. |
73 | STILLER C, THORUD B, SELJEBØ S, et al. Finite- volume modeling and hybrid-cycle performance of planar and tubular solid oxide fuel cells[J]. Journal of Power Sources, 2005, 141(2): 227-240. |
74 | FAN L, VAN BIERT L, THALLAM THATTAI A, et al. Study of methane steam reforming kinetics in operating solid oxide fuel cells: influence of current density[J]. International Journal of Hydrogen Energy, 2015, 40(15): 5150-5159. |
75 | THALLAM THATTAI A, VAN BIERT L, ARAVIND P V. On direct internal methane steam reforming kinetics in operating solid oxide fuel cells with nickel-ceria anodes[J]. Journal of Power Sources, 2017, 370: 71-86. |
76 | MOGENSEN D, GRUNWALDT J D, HENDRIKSEN P V, et al. Internal steam reforming in solid oxide fuel cells: Status and opportunities of kinetic studies and their impact on modelling[J]. Journal of Power Sources, 2011, 196(1): 25-38. |
77 | LEE A L, ZABRANSKY R F, HUBER W J. Internal reforming development for solid oxide fuel cells[J]. Industrial & Engineering Chemistry Research, 1990, 29(5): 766-773. |
78 | ACHENBACH E, RIENSCHE E. Methane/steam reforming kinetics for solid oxide fuel cells[J]. Journal of Power Sources, 1994, 52(2): 283-288. |
79 | BELYAEV V D, POLITOVA T I, MAR'INA O A, et al. Internal steam reforming of methane over Ni-based electrode in solid oxide fuel cells[J]. Applied Catalysis A: General, 1995, 133(1): 47-57. |
80 | AVETISOV A K, ROSTRUP-NIELSEN J R, KUCHAEV V L, et al. Steady-state kinetics and mechanism of methane reforming with steam and carbon dioxide over Ni catalyst[J]. Journal of Molecular Catalysis A: Chemical, 2010, 315(2): 155-162. |
81 | PARSONS J, RANDALL S, Experimental determination of kinetic rate data for sofc anodes[R]. SOFC-micromodelling, IEA-SOFC Task Report, 1992. |
82 | TIMMERMANN H, FOUQUET D, WEBER A, et al. Internal reforming of methane at Ni/YSZ and Ni/CGO SOFC cermet anodes[J]. Fuel Cells, 2006, 6(3/4): 307-313. |
83 | ØDEGÅRD R, JOHNSEN E, KAROLIUSSEN H. Methane reforming on Ni/zirconia SOFC anodes[C]// Fourth International Symposium on Solid Oxide Fuel Cells (SOFC-IV), The Electrochemical Society, 1995. |
84 | SCIAZKO A, KOMATSU Y, BRUS G, et al. A novel approach to the experimental study on methane/steam reforming kinetics using the orthogonal least squares method[J]. Journal of Power Sources, 2014, 262: 245-254. |
85 | CHEN K, ZHAO Y J, ZHANG W D, et al. The intrinsic kinetics of methane steam reforming over a nickel-based catalyst in a micro fluidized bed reaction system[J]. International Journal of Hydrogen Energy, 2020, 45(3): 1615-1628. |
86 | FU W B, HOU L Y, ZHONG B J, et al. An analysis of the ignition of premixed gases by a hot spherical surface with catalytic reforming reaction[J]. Fuel, 2003, 82(5): 539-544. |
87 | TIMMERMANN H, SAWADY W, REIMERT R, et al. Kinetics of (reversible) internal reforming of methane in solid oxide fuel cells under stationary and APU conditions[J]. Journal of Power Sources, 2010, 195(1): 214-222. |
88 | SOUENTIE S, ATHANASIOU M, NIAKOLAS D K, et al. Mathematical modeling of Ni/GDC and Au-Ni/GDC SOFC anodes performance under internal methane steam reforming conditions[J]. Journal of Catalysis, 2013, 306: 116-128. |
89 | XU J G, FROMENT G F. Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics[J]. AIChE Journal, 1989, 35(1): 88-96. |
90 | BEBELIS S, ZERITIS A, TIROPANI C, et al. Intrinsic kinetics of the internal steam reforming of CH4 over a Ni-YSZ-cermet catalyst-electrode[J]. Industrial & Engineering Chemistry Research, 2000, 39(12): 4920-4927. |
91 | HOU K H, HUGHES R. The kinetics of methane steam reforming over a Ni/α-Al2O catalyst[J]. Chemical Engineering Journal, 2001, 82(1/2/3): 311-328. |
92 | NAKAGAWA N, SAGARA H, KATO K. Catalytic activity of Ni-YSZ-CeO2 anode for the steam reforming of methane in a direct internal-reforming solid oxide fuel cell[J]. Journal of Power Sources, 2001, 92(1/2): 88-94. |
93 | DICKS A L, POINTON K D, SIDDLE A. Intrinsic reaction kinetics of methane steam reforming on a nickel/zirconia anode[J]. Journal of Power Sources, 2000, 86(1/2): 523-530. |
94 | SOHN S, BAEK S M, NAM J H, et al. Two-dimensional micro/macroscale model for intermediate-temperature solid oxide fuel cells considering the direct internal reforming of methane[J]. International Journal of Hydrogen Energy, 2016, 41(12): 5582-5597. |
95 | MOHAMMED H, AL-OTHMAN A, NANCARROW P, et al. Direct hydrocarbon fuel cells: A promising technology for improving energy efficiency[J]. Energy, 2019, 172: 207-219. |
96 | CHEEKATAMARLA P, FINNERTY C, CAI J. Internal reforming of hydrocarbon fuels in tubular solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2008, 33(7): 1853-1858. |
97 | KRONEMAYER H, BARZAN D, HORIUCHI M, et al. A direct-flame solid oxide fuel cell (DFFC) operated on methane, propane, and butane[J]. Journal of Power Sources, 2007, 166(1): 120-126. |
98 | CHEN B, XU H R, TAN P, et al. Thermal modelling of ethanol-fuelled solid oxide fuel cells[J]. Applied Energy, 2019, 237: 476-486. |
99 | YANG X S, WANG S, LI B W, et al. Performance of ethanol steam reforming in a membrane-assisted packed bed reactor using multiscale modelling[J]. Fuel, 2020, 274: 117829. |
100 | LINDSTRÖM B. Hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell applications[J]. International Journal of Hydrogen Energy, 2001, 26(9): 923-933. |
101 | CHEEKATAMARLA P K, FINNERTY C M, DU Y H, et al. Advanced tubular solid oxide fuel cells with high efficiency for internal reforming of hydrocarbon fuels[J]. Journal of Power Sources, 2009, 188(2): 521-526. |
102 | PATEL S, PANT K K. Activity and stability enhancement of copper-alumina catalysts using cerium and zinc promoters for the selective production of hydrogen via steam reforming of methanol[J]. Journal of Power Sources, 2006, 159(1): 139-143. |
103 | HUANG G, LIAW B J, JHANG C J, et al. Steam reforming of methanol over CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts[J]. Applied Catalysis A: General, 2009, 358(1): 7-12. |
104 | FRENI S, MAGGIO G, CAVALLARO S. Ethanol steam reforming in a molten carbonate fuel cell: A thermodynamic approach[J]. Journal of Power Sources, 1996, 62(1): 67-73. |
105 | JEONG H, KANG M. Hydrogen production from butane steam reforming over Ni/Ag loaded MgAl2O4 catalyst[J]. Applied Catalysis B: Environmental, 2010, 95(3/4): 446-455. |
106 | AL-MUSA A, AL-SALEH M, IOAKEIMIDIS Z C, et al. Hydrogen production by iso-octane steam reforming over Cu catalysts supported on rare earth oxides (REOs)[J]. International Journal of Hydrogen Energy, 2014, 39(3): 1350-1363. |
107 | AL-MUSA A A, IOAKEIMIDIS Z S, AL-SALEH M S, et al. Steam reforming of iso-octane toward hydrogen production over mono- and bi-metallic Cu-Co/CeO2 catalysts: Structure-activity correlations[J]. International Journal of Hydrogen Energy, 2014, 39(34): 19541-19554. |
108 | PURNAMA H, RESSLER T, JENTOFT R E, et al. CO formation/selectivity for steam reforming of methanol with a commercial CuO/ZnO/Al2O3 catalyst[J]. Applied Catalysis A: General, 2004, 259(1): 83-94. |
109 | SAMMS S. Kinetics of methanol-steam reformation in an internal reforming fuel cell[J]. Journal of Power Sources, 2002, 112(1): 13-29. |
110 | ILINICH O M, LIU Y, WATERMAN E M, et al. Kinetics of methanol steam reforming with a Pd-Zn-Y/CeO2 catalyst under realistic operating conditions of a portable reformer in fuel cell applications[J]. Industrial & Engineering Chemistry Research, 2013, 52(2): 638-644. |
111 | JIANG C J, TRIMM D L, WAINWRIGHT M S, et al. Kinetic study of steam reforming of methanol over copper-based catalysts[J]. Applied Catalysis A: General, 1993, 93(2): 245-255. |
112 | JIANG C J, TRIMM D L, WAINWRIGHT M S, et al. Kinetic mechanism for the reaction between methanol and water over a Cu-ZnO-Al2O3 catalyst[J]. Applied Catalysis A: General, 1993, 97(2): 145-158. |
113 | THERDTHIANWONG A, SAKULKOAKIET T, THERDTHIANWONG S. Hydrogen production by catalytic ethanol steam reforming[J]. Science Asia, 2001, 27(3): 193. |
114 | AFOLABI A T F, KECHAGIOPOULOS P N, LIU Y R, et al. Kinetic features of ethanol steam reforming and decomposition using a biochar-supported Ni catalyst[J]. Fuel Processing Technology, 2021, 212: 106622. |
115 | TOSTI S, BASILE A, BORELLI R, et al. Ethanol steam reforming kinetics of a Pd-Ag membrane reactor[J]. International Journal of Hydrogen Energy, 2009, 34(11): 4747-4754. |
116 | CHEN W H, LU C Y, TRAN K Q, et al. A new design of catalytic tube reactor for hydrogen production from ethanol steam reforming[J]. Fuel, 2020, 281: 118746. |
117 | BADWAL S P S, GIDDEY S, KULKARNI A, et al. Direct ethanol fuel cells for transport and stationary applications-A comprehensive review[J]. Applied Energy, 2015, 145: 80-103. |
118 | CIMENTI M, HILL J. Direct utilization of liquid fuels in SOFC for portable applications: Challenges for the selection of alternative anodes[J]. Energies, 2009, 2(2): 377-410. |
119 | THATTARATHODY R, SHEINTUCH M. Kinetics and dynamics of methanol steam reforming on CuO/ZnO/alumina catalyst[J]. Applied Catalysis A: General, 2017, 540: 47-56. |
120 | AL-MUSA A, KAKLIDIS N, AL-SALEH M, et al. Iso-octane internal reforming in a solid oxide cell reactor[J]. Solid State Ionics, 2016, 288: 135-139. |
121 | ALI SAADABADI S, THALLAM THATTAI A, FAN L Y, et al. Solid oxide fuel cells fuelled with biogas: Potential and constraints[J]. Renewable Energy, 2019, 134: 194-214. |
122 | GIRONA K, LAURENCIN J, FOULETIER J, et al. Carbon deposition in CH4/CO2 operated SOFC: Simulation and experimentation studies[J]. Journal of Power Sources, 2012, 210: 381-391. |
123 | 霍海波, 朱新坚, 曹广益. SOFC建模与控制策略的研究现状与发展[J]. 电源技术, 2007, 31(10): 833-836. |
HUO H B, ZHU X J, CAO G Y. Research status and development of modeling and controlling for SOFC[J]. Chinese Journal of Power Sources, 2007, 31(10): 833-836. |
[1] | Kaifu LUAN, Changkun CAI, Manyi XIE, Chun ZHANG, Kuncan ZHENG, Shengli AN. Research progress of macroscale numerical simulation of fluid and thermal fields of solid oxide fuel cells [J]. Energy Storage Science and Technology, 2023, 12(9): 2985-3002. |
[2] | Lexian DONG, Qun ZHENG, Yue HUANG, Zhipeng TIAN, Jianping LIU, Chao WANG, Bo LIANG, Libin LEI. Research progress on cutting-edge technology of tubular solid oxide fuel cells [J]. Energy Storage Science and Technology, 2023, 12(1): 131-138. |
[3] | Changyang LIU, Liuzhen BIAN, Jianquan GAO, Jihua PENG, Jun PENG, Shengli AN. Electrochemical performance of La0.7Sr0.3Fe0.9Ni0.1O3-δ symmetric electrode for solid oxide fuel cell with CO as fuel [J]. Energy Storage Science and Technology, 2022, 11(7): 2059-2065. |
[4] | Hui TIAN, Dong HUA, Maoli MAN, Chunzhe LIU, Guojun LI, Xiongwen ZHANG. Experimental study on carbon deposition characteristics of planar solid oxide fuel cell [J]. Energy Storage Science and Technology, 2022, 11(5): 1314-1321. |
[5] | Pingping LI, Shanshan CHEN, Lulu ZHAO, Mingliang SHI, Yan HUANG, Chufu LI. Test design of integrated gasification solid oxide fuel cell (IG-SOFC) grid-connection technology [J]. Energy Storage Science and Technology, 2021, 10(6): 2039-2045. |
[6] | Tingting HAN, Yuxi WU, Ziheng XIE, Xiuxia MENG, Jinjin ZHANG, Yujiao XIE, Fangyong YU, Naitao YANG. Recent advances in carbon deposition mechanism and performance improvement of Ni-based anode for solid oxide fuel cells [J]. Energy Storage Science and Technology, 2021, 10(6): 1931-1942. |
[7] | Shouli WEI, Xichao LI, Xiuliang CHANG, Bing CHEN, Zhuo XU, Tao ZHANG, Lili ZHENG, Zuoqiang DAI. Review of development of bipolar plate materials for solid oxide fuel cell [J]. Energy Storage Science and Technology, 2021, 10(6): 1943-1951. |
[8] | Wenchao LIAN, Libin LEI, Bo LIANG, Chao WANG, Lei WEI, Zhipeng TIAN, Jianping LIU, Huazheng YANG, Jiajian LIANG, Tao SHI. Utilization and synthesis of ammonia in proton-conducting solid oxide electrochemical devices [J]. Energy Storage Science and Technology, 2021, 10(6): 1998-2007. |
[9] | Yuxi WU, Tingting HAN, Ziheng XIE, Lin LI, Yanwen SONG, Jiacang LIANG, Jinjin ZHANG, Fangyong YU, Naitao YANG. Recent progress in direct carbon solid oxide fuel cells: Carbon fuels and reverse Boudouard reaction catalysts [J]. Energy Storage Science and Technology, 2021, 10(6): 1977-1986. |
[10] | Lina ZHENG, Wenzhong WANG, Kaijie JIA, Shaofeng QIU, Haoyuan ZHU, Fangyong YU, Xiuxia MENG, Jinjin ZHANG, Naitao YANG. Three-dimensional printing technologies in the field of solid oxide fuel cells [J]. Energy Storage Science and Technology, 2021, 10(6): 1952-1962. |
[11] | DONG Xu, DU Zhihong, ZHANG Yang, LI Keyun, ZHAO Hailei. SrFeF x O3- x - δ cathode with high catalytic activity for solid oxide fuel cells [J]. Energy Storage Science and Technology, 2020, 9(2): 415-424. |
[12] | CHEN Hu, XIONG Hui, LI Yunjie, LI Xinfeng. Research progress on thermogenic characteristics of lithium ion batteries [J]. Energy Storage Science and Technology, 2019, 8(S1): 49-55. |
[13] | LV Zewei, HAN Minfang. Design of solar cogeneration system of hydrogen and power with solid oxide cells#br# [J]. Energy Storage Science and Technology, 2017, 6(2): 275-279. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||