Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (8): 2726-2736.doi: 10.19799/j.cnki.2095-4239.2024.0268
• Energy Storage System and Engineering • Previous Articles Next Articles
Xu SONG1(), Nannan SUN2, Hengchao CAO2, Guixiang ZHU2, Menghan LI1, Xiaori LIU1,2,3(), Zhonghao RAO1
Received:
2024-03-28
Revised:
2024-04-13
Online:
2024-08-28
Published:
2024-08-15
Contact:
Xiaori LIU
E-mail:202231304010@stu.hebut.edu.cn;liuxiaori@hebut.edu.cn
CLC Number:
Xu SONG, Nannan SUN, Hengchao CAO, Guixiang ZHU, Menghan LI, Xiaori LIU, Zhonghao RAO. Research on a power battery thermal management system using direct refrigerant cooling with parallel serpentine flow paths[J]. Energy Storage Science and Technology, 2024, 13(8): 2726-2736.
Table 3
Physical properties of solid materials and refrigerants"
材料 | 密度/(kg/m3) | 比热容/[J/(kg·K)] | 热导率/[W/(m·K)] | 运动黏度/(Pa·s) | 标准态焓/(J/kmol) | 分子量/(kg/kmol) |
---|---|---|---|---|---|---|
导热硅胶 | 2750 | 1500 | 3.1 | — | — | — |
正极(磷酸铁锂) | 1523 | 900 | 2 | — | — | — |
负极(石墨) | 1500 | 710 | 151 | — | — | — |
电池连接片 | 2719 | 871 | 202.4 | — | — | — |
R134a-液态 | 1147.4 | 1490 | 0.075 | 1.62×10-4 | 2.93×107 | 102 |
R134a-气态 | 49.872 | 1140 | 0.0154 | 1.24×10-5 | 4.35×107 | 102 |
1 | GUO J, JIANG F M. A novel electric vehicle thermal management system based on cooling and heating of batteries by refrigerant[J]. Energy Conversion and Management, 2021, 237: 114145. DOI: 10.1016/j.enconman.2021.114145. |
2 | ZENG J X, FENG S, LAI C G, et al. Prediction on thermal performance of refrigerant-based battery thermal management system for a HEV battery pack[J]. International Journal of Heat and Mass Transfer, 2023, 201: 123657. DOI: 10.1016/j.ijheatmasstransfer.2022.123657. |
3 | WANG Z R, HUANG L P, HE F. Design and analysis of electric vehicle thermal management system based on refrigerant-direct cooling and heating batteries[J]. Journal of Energy Storage, 2022, 51: 104318. DOI: 10.1016/j.est.2022.104318. |
4 | CHENG G, WANG Z Z, TANG T Q, et al. A novel double-layer lithium-ion battery thermal management system based on composite PCM optimized heat dissipation and preservation in cold climates[J]. Journal of Energy Storage, 2024, 85: 110992. DOI: 10.1016/j.est.2024.110992. |
5 | CHOI H, HONG J, LEE S, et al. A novel battery thermal management system for cooling/preheating utilizing a polymer intercell heat exchanger with phase change material[J]. Applied Thermal Engineering, 2024, 238: 122248. DOI: 10.1016/j.applthermaleng.2023.122248. |
6 | DENG J, HUANG Q Q, LI X X, et al. Influence mechanism of battery thermal management with flexible flame retardant composite phase change materials by temperature aging[J]. Renewable Energy, 2024, 222: 119922. DOI: 10.1016/j.renene.2023.119922. |
7 | JIANG W, LYU P Z, LIU X J, et al. An immersion flow boiling heat dissipation strategy for efficient battery thermal management in non-steady conditions[J]. Applied Thermal Engineering, 2024, 245: 122783. DOI: 10.1016/j.applthermaleng.2024.122783. |
8 | KUMAR K, SARKAR J, MONDAL S S. Multi-scale-multi-domain simulation of novel microchannel-integrated cylindrical Li-ion battery thermal management: nanoparticle shape effect[J]. Journal of Energy Storage, 2024, 84: 110824. DOI: 10.1016/j.est.2024.110824. |
9 | LIU X, WU P Y, SU C Q, et al. Li-ion battery thermal management and thermal runaway suppression method of combining phase change material and annular thermoelectric cooler[J]. Journal of Energy Storage, 2024, 82: 110564. DOI: 10.1016/j.est.2024.110564. |
10 | 贺元骅, 余兴科, 樊榕, 等. 动力锂离子电池热管理技术研究进展[J]. 电池, 2022, 52(3): 337-341. DOI: 10.19535/j.1001-1579.2022.03.024. |
HE Y H, YU X K, FAN R, et al. Research progress in thermal management technology of power Li-ion battery[J]. Battery Bimonthly, 2022, 52(3): 337-341. DOI: 10.19535/j.1001-1579.2022.03.024. | |
11 | ZHANG X W, GAO Q, YANG S C, et al. Co-regulation of integrated thermal management based on refrigerant cooling for electric vehicles[J]. Applied Thermal Engineering, 2023, 226: 120306. DOI: 10.1016/j.applthermaleng.2023.120306. |
12 | ZHAO G, WANG X L, NEGNEVITSKY M, et al. An up-to-date review on the design improvement and optimization of the liquid-cooling battery thermal management system for electric vehicles[J]. Applied Thermal Engineering, 2023, 219: 119626. DOI: 10.1016/j.applthermaleng.2022.119626. |
13 | 乔雨民. 锂离子电池预锂化技术研究进展[J]. 中国粉体工业, 2024(1): 20-22, 29. |
QIAO Y M. Research progress of pre-lithiation technology for lithium ion batteries[J]. China Powder Industry, 2024(1): 20-22, 29. | |
14 | 刘霏霏, 鲍荣清, 程贤福, 等. 服役工况下车用锂离子动力电池散热方法综述[J]. 储能科学与技术, 2021, 10(6): 2269-2282. DOI: 10.19799/j.cnki.2095-4239.2021.0156. |
LIU F F, BAO R Q, CHENG X F, et al. Review on heat dissipation methods of lithium-ion power battery for vehicles under service conditions[J]. Energy Storage Science and Technology, 2021, 10(6): 2269-2282. DOI: 10.19799/j.cnki.2095-4239.2021.0156. | |
15 | 何贤, 邓冬, 苏健, 等. 8kW车载动力电池直冷系统实验研究[J]. 制冷学报, 2019, 40(2): 20-27. DOI: 10.3969/j.issn.0253-4339.2019.02.020. |
HE X, DENG D, SU J, et al. Experimental research on an 8 kW direct cooling unit for power BatteryUsed in a vehicle[J]. Journal of Refrigeration, 2019, 40(2): 20-27. DOI: 10.3969/j.issn.0253-4339.2019.02.020. | |
16 | 胡凌韧, 方奕栋, 杨文量, 等. 平行小通道直冷板传热特性实验研究[J]. 制冷学报, 2021, 42(3): 87-92. DOI: 10.3969/j.issn.0253-4339.2021.03.087. |
HU L R, FANG Y D, YANG W L, et al. Experimental study on heat transfer characteristics of a parallel mini-channel direct cooling plate[J]. Journal of Refrigeration, 2021, 42(3): 87-92. DOI: 10.3969/j.issn.0253-4339.2021.03.087. | |
17 | 高帅, 王俊博, 朱佳慧, 等. 基于二次节流的电池直冷系统设计与分析[J]. 低温与超导, 2023, 51(5): 56-63, 89. DOI: 10.16711/j.1001-7100.2023.05.009. |
GAO S, WANG J B, ZHU J H, et al. Design and analysis of direct cooling system for power battery based on second-throttling[J]. Cryogenics & Superconductivity, 2023, 51(5): 56-63, 89. DOI: 10.16711/j.1001-7100.2023.05.009. | |
18 | 高帅, 王俊博, 朱佳慧, 等. 制冷剂相态变化对动力电池直冷系统温控性能的影响分析[J]. 制冷学报, 2023, 44(3): 58-66, 80. DOI: 10.3969/j.issn.0253-4339.2023.03.058. |
GAO S, WANG J B, ZHU J H, et al. Influence of refrigerant phase change on temperature control performance of direct cooling system for power batteries[J]. Journal of Refrigeration, 2023, 44(3): 58-66, 80. DOI: 10.3969/j.issn.0253-4339.2023.03.058. | |
19 | YAO M L, GAN Y H, LIANG J L, et al. Performance simulation of a heat pipe and refrigerant-based lithium-ion battery thermal management system coupled with electric vehicle air-conditioning[J]. Applied Thermal Engineering, 2021, 191: 116878. DOI: 10.1016/j.applthermaleng.2021.116878. |
20 | 王肖军, 张恒运, 黄兴华, 等. 基于微小槽道的冷媒直冷电池热管理系统性能研究与优化[J]. 过程工程学报, 2023, 23(1): 154-162. DOI: 10.12034/j.issn.1009-606X.222043. |
WANG X J, ZHANG H Y, HUANG X H, et al. Research and optimization on battery thermal management system with refrigerant cooling based on mini-channels[J]. The Chinese Journal of Process Engineering, 2023, 23(1): 154-162. DOI: 10.12034/j.issn.1009-606X.222043. | |
21 | PARK S, JANG D S, LEE D C, et al. Simulation on cooling performance characteristics of a refrigerant-cooled active thermal management system for lithium ion batteries[J]. International Journal of Heat and Mass Transfer, 2019, 135: 131-141. DOI: 10.1016/j.ijheatmasstransfer.2019.01.109. |
22 | HONG S H, JANG D S, PARK S, et al. Thermal performance of direct two-phase refrigerant cooling for lithium-ion batteries in electric vehicles[J]. Applied Thermal Engineering, 2020, 173: 115213. DOI: 10.1016/j.applthermaleng.2020.115213. |
23 | 鲍文迪. 直冷式动力电池热管理性能分析[D]. 长春: 吉林大学, 2019.BAO W D. Thermal management performance analysis of direct cooling power battery[D]. Changchun: Jilin University, 2019. |
24 | WANG Y, GAO Q, WANG H W. Structural design and its thermal management performance for battery modules based on refrigerant cooling method[J]. International Journal of Energy Research, 2021, 45(3): 3821-3837. DOI: 10.1002/er.6035. |
25 | LIAN Y B, LING H P, SONG G, et al. Experimental investigation on a heating-and-cooling difunctional battery thermal management system based on refrigerant[J]. Applied Thermal Engineering, 2023, 225: 120138. DOI: 10.1016/j.applthermaleng.2023.120138. |
26 | WANG J B, GAO S, ZHU J H, et al. Thermal performance analysis and burning questions of refrigerant direct cooling for electric vehicle battery[J]. Applied Thermal Engineering, 2023, 232: 121055. DOI: 10.1016/j.applthermaleng.2023.121055. |
27 | 聂磊, 王敏弛, 赵耀, 等. 纯电动汽车冷媒直冷电池热管理系统的实验研究[J]. 制冷学报, 2020, 41(4): 52-58. DOI: 10.3969/j.issn.0253-4339.2020.04.052. |
NIE L, WANG M C, ZHAO Y, et al. Experimental study on direct refrigerant battery cooling system for electric vehicle[J]. Journal of Refrigeration, 2020, 41(4): 52-58. DOI: 10.3969/j.issn.0253-4339.2020.04.052. | |
28 | SHEN M, GAO Q. Structure design and effect analysis on refrigerant cooling enhancement of battery thermal management system for electric vehicles[J]. Journal of Energy Storage, 2020, 32: 101940. DOI: 10.1016/j.est.2020.101940. |
29 | LUO D, ZHAO Y, CAO J, et al. Performance analysis of a novel thermoelectric-based battery thermal management system[J]. Renewable Energy, 2024, 224: 120193. DOI: 10.1016/j.renene.2024.120193. |
30 | SINGIRIKONDA S, OBULESU Y P. Adaptive secondary loop liquid cooling with refrigerant cabin active thermal management system for electric vehicle[J]. Journal of Energy Storage, 2022, 50: 104624. DOI: 10.1016/j.est.2022.104624. |
31 | WANG X J, ZHANG H Y, YI Z Z, et al. Thermal characteristics of refrigerant flow boiling in two mini-channel heat sinks of different aspect ratios for battery thermal management[J]. Applied Thermal Engineering, 2022, 217: 119173. DOI: 10.1016/j.applthermaleng.2022.119173. |
32 | DE ROSSI F, MAURO A W, ROSATO A. Local heat transfer coefficients and pressure gradients for R-134a during flow boiling at temperatures between -9 ℃ and +20 ℃[J]. Energy Conversion and Management, 2009, 50(7): 1714-1721. DOI: 10.1016/j.enconman.2009.03.022. |
33 | CHEN Y, LIU X R, RAO Z H. A numerical study on the effects of using combined flow fields and obstacles on the performance of proton exchange membrane fuel cells[J]. Fuel Cells, 2023, 23(3): 273-289. DOI: 10.1002/fuce.202200207. |
34 | EL-ZOHEIRY R M, OOKAWARA S, AHMED M. Efficient fuel utilization by enhancing the under-rib mass transport using new serpentine flow field designs of direct methanol fuel cells[J]. Energy Conversion and Management, 2017, 144: 88-103. DOI: 10.1016/j.enconman.2017.04.041. |
[1] | Guohe CHEN, Peizhao LYU, Menghan LI, Zhonghao RAO. Research progress on thermal runaway propagation characteristics of lithium-ion batteries and its inhibiting strategies [J]. Energy Storage Science and Technology, 2024, 13(7): 2470-2482. |
[2] | Songyan LIU, Weiliang WANG, Shiliang PENG, Junfu LYU. Thermal management system for power battery in high/low-temperature environments [J]. Energy Storage Science and Technology, 2024, 13(7): 2181-2191. |
[3] | Yaxin ZHANG, Quan ZHANG, Xujing LOU, Hao ZHOU, Zhiwen CHEN, Gang LONG. Study on the temperature control effect of a two-phase cold plate liquid cooling system in a container energy storage power station [J]. Energy Storage Science and Technology, 2024, 13(6): 1921-1928. |
[4] | Yunfeng ZHANG, Xuewen ZHANG, Wei ZHONG, Duwei JIANG, Zewei CHEN, Jie ZHANG. Numerical simulation of heat transfer performance of plate-fin radiator reinforced with double cascade phase change material of paraffin and low melting point alloy [J]. Energy Storage Science and Technology, 2024, 13(5): 1460-1470. |
[5] | Ao KE, Rukun YANG, Xueke WU. Intelligent winding technology of power batteries [J]. Energy Storage Science and Technology, 2024, 13(4): 1176-1187. |
[6] | Jia LIU, Zhiqiang MA, Guangchen LIU, Jundong GAO, Hongxun LI. Predicting the residual useful life of power batteries based on the GRUU-TCN ensemble under multiscale decomposition [J]. Energy Storage Science and Technology, 2024, 13(3): 1009-1018. |
[7] | Qi LIAO, Xiaolin CAO, Yibo DENG, Yaolin YANG, Ting CHEN. Heat dissipation simulation of tram supercapacitor module [J]. Energy Storage Science and Technology, 2024, 13(2): 702-711. |
[8] | Mengqiong SONG, Yu PENG, Ziqiang LIAO. Research on battery thermal management based on electrochemical model [J]. Energy Storage Science and Technology, 2024, 13(2): 578-585. |
[9] | Panchun TANG, Rong YAN, Can ZHANG, Ze SUN. Simulation of air- and liquid-cooled thermal management of stacked automotive supercapacitors [J]. Energy Storage Science and Technology, 2024, 13(2): 483-491. |
[10] | Hongyi LIANG, Feng CHEN, Youyi GAN, Dan SHAO. Characteristics of ternary cathode of lithium-ion power battery at low temperature [J]. Energy Storage Science and Technology, 2024, 13(1): 293-298. |
[11] | Wenxin TONG, Zhongyuan HUANG, Rui WANG, Sihao DENG, Lunhua HE, Yinguo XIAO. Spatially-resolved neutron diffraction study of the homogeneity of electrochemical reaction in lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 72-81. |
[12] | Shaohong ZENG, Weixiong WU, Jizhen LIU, Shuangfeng WANG, Shifeng YE, Zhenyu FENG. A review of research on immersion cooling technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(9): 2888-2903. |
[13] | Guangjin ZHAO, Bowen LI, Yuxia HU, Ruifeng DONG, Fangfang WANG. Overview of the echelon utilization technology and engineering application of retired power batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2319-2332. |
[14] | Huiqun YU, Zhehao HU, Daogang PENG, Haoyi SUN. Key technologies for retired power battery recovery and its cascade utilization in energy storage systems [J]. Energy Storage Science and Technology, 2023, 12(5): 1675-1685. |
[15] | Yunjie LI, Guangyu ZHANG, Weiwen ZHU, Yuanyuan MIN, Chengfei RAO, Yanfei SUN, Qingqing XU. The dynamic simulation of pressure relief characteristics of the power battery vent based on choking flow [J]. Energy Storage Science and Technology, 2023, 12(3): 960-967. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||