Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (4): 1362-1368.doi: 10.19799/j.cnki.2095-4239.2024.1014
• Energy Storage Materials and Devices • Previous Articles Next Articles
Zhiming CHEN1(), Aimin CHU1(
), Ziyu ZHOU1, Yuping Zhao2, Youming CHEN1
Received:
2024-10-31
Revised:
2024-11-24
Online:
2025-04-28
Published:
2025-05-20
Contact:
Aimin CHU
E-mail:2368445516@qq.com;chuaiminme@163.com
CLC Number:
Zhiming CHEN, Aimin CHU, Ziyu ZHOU, Yuping Zhao, Youming CHEN. Preparation and performance of Li-rich cathode material by carbon-containing droplet combustion[J]. Energy Storage Science and Technology, 2025, 14(4): 1362-1368.
Table 1
Discharge capacity and difference of Li-rich cathode materials prepared by two different preparation methods at different current densities"
Samples | 0.1C | 0.3C | 0.5C | 1C | 2C | 5C | 10C | 0.1C |
---|---|---|---|---|---|---|---|---|
LMCN-solution | 326.66 | 256.07 | 219.30 | 194.59 | 176.41 | 136.97 | 105.74 | 301.84 |
LMCN-droplet | 390.89 | 370.04 | 283.21 | 258.81 | 230.39 | 185.06 | 57.03 | 464.10 |
difference value | 64.23 | 113.97 | 63.91 | 64.22 | 53.98 | 48.09 | -48.70 | 162.26 |
1 | QIN H Q, MO Z Z, LU J, et al. Ultrafast transformation of natural graphite into self-supporting graphene as superior anode materials for lithium-ion batteries[J]. Carbon, 2024, 216: 118559. DOI: 10.1016/j.carbon.2023.118559. |
2 | ACHARYA T, PATHAK A D, PATI S. High-temperature electrochemical performance of lithium titanate (Li4Ti5O12) anode material in secondary lithium-ion batteries[J]. Journal of Energy Storage, 2023, 67: 107529. DOI: 10.1016/j.est.2023.107529. |
3 | ZHAO L Y, BENNETT J C, GEORGE A, et al. SiC-free carbon-silicon alloys prepared by delithiation as lithium-ion battery negative electrodes[J]. Chemistry of Materials, 2019, 31(11): 3883-3890. DOI: 10.1021/acs.chemmater.8b03898. |
4 | ZHANG J C, LIU Z D, ZENG C H, et al. High-voltage LiCoO2 cathodes for high-energy-density lithium-ion battery[J]. Rare Metals, 2022, 41(12): 3946-3956. DOI: 10.1007/s12598-022-02070-6. |
5 | STENINA I, MINAKOVA P, KULOVA T, et al. Electrochemical properties of LiFePO4 cathodes: The effect of carbon additives[J]. Batteries, 2022, 8(9): 111. DOI: 10.3390/batteries8090111. |
6 | HU S J, PILLAI A S, LIANG G M, et al. Li-rich layered oxides and their practical challenges: Recent progress and perspectives[J]. Electrochemical Energy Reviews, 2019, 2(2): 277-311. DOI: 10. 1007/s41918-019-00032-8. |
7 | SONG J, LI B, CHEN Y Y, et al. A high-performance Li-Mn-O Li-rich cathode material with rhombohedral symmetry via intralayer Li/Mn disordering[J]. Advanced Materials, 2020, 32(16): 2000190. DOI: 10.1002/adma.202000190. |
8 | LIU W, XU J P, KAN W H, et al. Enhancing ionic transport and structural stability of lithium-rich layered oxide cathodes via local structure regulation[J]. Small, 2023, 19(41): 2302912. DOI: 10. 1002/smll.202302912. |
9 | ZHANG K, LI B, ZUO Y X, et al. Voltage decay in layered Li-rich Mn-based cathode materials[J]. Electrochemical Energy Reviews, 2019, 2(4): 606-623. DOI: 10.1007/s41918-019-00049-z. |
10 | MA Y T, LIU P F, XIE Q S, et al. Double-shell Li-rich layered oxide hollow microspheres with sandwich-like carbon@spinel@layered@ spinel@carbon shells as high-rate lithium ion battery cathode[J]. Nano Energy, 2019, 59: 184-196. DOI: 10.1016/j.nanoen.2019. 02.040. |
11 | LIU S L, YAN P, LI H B, et al. One-step microwave synthesis of micro/nanoscale LiFePO4/graphene cathode with high performance for lithium-ion batteries[J]. Frontiers in Chemistry, 2020, 8: 104. DOI: 10.3389/fchem.2020.00104. |
12 | 徐祖伟, 高富昌, 龙周禾, 等. 火焰喷雾热解合成Pt/TiO2纳米颗粒的催化燃烧性能[J]. 燃烧科学与技术, 2024, 30(2): 103-110. DOI: 10.11715/rskxjs.R202312021. |
XU Z W, GAO F C, LONG Z H, et al. Catalytic combustion performance of Pt/TiO2 nanoparticles synthesized by flame spray pyrolysis[J]. Journal of Combustion Science and Technology, 2024, 30(2): 103-110. DOI: 10.11715/rskxjs.R202312021. | |
13 | GAO J, HUANG Z L, LI J J, et al. Preparation and characterization of Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials for lithium-ion battery[J]. Ionics, 2014, 20(3): 301-307. DOI: 10.1007/s11581-013-0991-1. |
14 | LI S H, LI H X, ZHANG H Y, et al. Constructing stable surface structures enabling fast charging for Li-rich layered oxide cathodes[J]. Chemical Engineering Journal, 2022, 427: 132036. DOI: 10.1016/j.cej.2021.132036. |
15 | DOUMENG M, BERTHET F, DELBÉ K, et al. Effect of size, concentration, and nature of fillers on crystallinity, thermal, and mechanical properties of polyetheretherketone composites[J]. Journal of Applied Polymer Science, 2022, 139(5): 51574. DOI: 10.1002/app.51574. |
16 | LIU Z G, SU Z, TIAN H L. Synthesis of β-LiVOPO4/C by sol-gel method and microwave sintering as cathode material for lithium ion batteries[J]. International Journal of Electrochemical Science, 2017, 12(11): 10107-10114. DOI: 10.20964/2017.11.87. |
17 | JAMES LI Y J, CHIEN W C, TANG C J, et al. Electrochemical performance of spherical Li-rich LMNCO cathode materials prepared using a two-step spray-drying method[J]. Ceramics International, 2022, 48(5): 6302-6312. DOI: 10.1016/j.ceramint. 2021.11.173. |
18 | XIE X, LI H, CAO S, et al. Improving the cycling stability of Li-rich Mn-based cathodes through surface modification of VOPO4[J]. Energy & Fuels, 2021, 35(17): 14148-14156. DOI: 10.1021/acs.energyfuels.1c01898. |
19 | ZHAO L, SUN Y Y, SONG K X, et al. Enhanced electrochemical performance of Li-rich Li[Li0.2Mn0.52Ni0.13Co0.13V0.02]O2 cathode materials for lithium ion batteries by Li1.13Mn0.47Ni0.2Co0.2O2 coating[J]. Ionics, 2020, 26(9): 4455-4462. DOI: 10.1007/s11581-020-03621-6. |
20 | GUO W B, ZHANG C Y, ZHANG Y G, et al. A universal strategy toward the precise regulation of initial coulombic efficiency of Li-rich Mn-based cathode materials[J]. Advanced Materials, 2021, 33(38): 2103173. DOI: 10.1002/adma.202103173. |
21 | WU Z L, XIE H J, LI Y Z, et al. Insights into the chemical and structural evolution of Li-rich layered oxide cathode materials[J]. Inorganic Chemistry Frontiers, 2021, 8(1): 127-140. DOI: 10. 1039/D0QI01021A. |
22 | CHEN H, XIA X, MA J. Comprehensive review of Li-rich Mn-based layered oxide cathode materials for lithium-ion batteries: Theories, challenges, strategies and perspectives[J]. ChemSusChem, 2024, 17(24): e202401120. DOI: 10.1002/cssc. 202401120. |
[1] | Lei PENG, Zhaopeng NI, Yue YU, Fupeng SUN, Xiulong XIA, Peng ZHANG, Sibo SUN. Experimental study on NCM lithium-ion battery electric vehicle fire caused by overcharging [J]. Energy Storage Science and Technology, 2025, 14(4): 1484-1495. |
[2] | Jiangwei SHEN, Yixin SHE, Xing SHU, Yonggang LIU, Fuxing WEI, Xuelei XIA, Zheng CHEN. State of health estimation for lithium batteries based on short-term random charging data and optimized convolutional neural network [J]. Energy Storage Science and Technology, 2025, 14(4): 1585-1595. |
[3] | Ruihao LIU, Xiaole MA, Yuxuan ZHANG, Yueying ZHU, Shiqiang LIU, Guangli BAI. Influencing factors of thermal property parameter testing of lithium-ion batteries based on accelerating rate calorimeters [J]. Energy Storage Science and Technology, 2025, 14(4): 1596-1602. |
[4] | Zuolin DONG, Jinyan SONG, Zidi MENG. Lithium-ion battery life prediction based on mode decomposition and deep learning [J]. Energy Storage Science and Technology, 2025, 14(4): 1645-1653. |
[5] | Jinming YUE, Yuanli LIU, Yixia CHEN, Xiqian YU, Hong LI. Study on the separation conditions of lithium ion battery electrolyte by GC-MS detection [J]. Energy Storage Science and Technology, 2025, 14(4): 1564-1573. |
[6] | Peng WANG, Jun ZHOU, Xing WU, Tao LIU. Remaining useful life prediction of a lithium-ion battery based on a cheetah optimization-extreme learning machine with improved Sine chaotic mapping [J]. Energy Storage Science and Technology, 2025, 14(4): 1603-1616. |
[7] | Youwei WEN, Anqi TENG, Yongqi LI, Jiamin TIAN, Kangjie DING, Qiangling DUAN, Qingsong WANG. Electrical performance and heat production behavior of sodium-ion batteries at different discharge rate [J]. Energy Storage Science and Technology, 2025, 14(4): 1687-1697. |
[8] | Dequan HUANG, Tao WEI, Guangda YIN, Gang WEN, Jue HOU, Yi LIANG. Research on the application of siloxane solvent in high-voltage lithium metal batteries and electrochemical performance [J]. Energy Storage Science and Technology, 2025, 14(4): 1340-1351. |
[9] | Lei WANG, Shaomian LIU, Fenglan FAN, Ziteng YANG. Structure-activity relationships of fast-growing wood based hard carbon anodes for sodium ion battery [J]. Energy Storage Science and Technology, 2025, 14(3): 1107-1114. |
[10] | Shuaibo ZENG, Yongyi LI, Jing PENG, Zixing HE, Zhuojian LIANG, Wei XU, Lingxiao LAN, Xinghua LIANG. Optimization design of conductive agent based on ternary lithium-ion battery [J]. Energy Storage Science and Technology, 2025, 14(3): 1187-1197. |
[11] | Chaolong ZHANG, Yang CHEN, Mengling LIU, Yufeng ZHANG, Guoqing HUA, Panpan YIN. A state of health estimation method for lithium-ion batteries using ICA-T features and CNN-LA-BiLSTM [J]. Energy Storage Science and Technology, 2025, 14(3): 1258-1269. |
[12] | Huiming CHEN, Yijia CAI, Wenji YIN, Meifeng CHEN, Youguo HUANG, Sijiang HU, Hongqiang WANG, Qingyu LI. Cr/Mo co-doped regulation on structure and electrochemical performance in Li-rich manganese-based cathode materials [J]. Energy Storage Science and Technology, 2025, 14(3): 1123-1132. |
[13] | Xinyu ZHANG, Shenghao LUO, Yingxin WU, Zhenying LIU, Lizhi ZHANG, Ziye LING. Research progress of composite phase change materials for thermal management and thermal runaway protection of lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 1040-1053. |
[14] | Boyu LIU, Tengfei WANG, Qing PANG, Kaiyu CHEN, Hongyu WANG. Preparation and electrochemical performance of Mg-Cr co-doped LiNi0.5Mn1.5O4 cathode material [J]. Energy Storage Science and Technology, 2025, 14(3): 1097-1106. |
[15] | Shuangming DUAN, Kuifeng XIA, Wei ZHU. Multi-stage optimization charging strategy for lithium-ion batteries considering diverse application scenarios [J]. Energy Storage Science and Technology, 2025, 14(2): 779-790. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||