Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (9): 3354-3372.doi: 10.19799/j.cnki.2095-4239.2025.0147
• Energy Storage Materials and Devices • Previous Articles Next Articles
Tuo DENG(), Haiping ZHOU(
), Yu LIU, Chang LIU, Zikai LI, Mengqiang WU
Received:
2025-02-22
Revised:
2025-03-19
Online:
2025-09-28
Published:
2025-09-05
Contact:
Haiping ZHOU
E-mail:1281471718@qq.com;haipzhou@uestc.edu.cn
CLC Number:
Tuo DENG, Haiping ZHOU, Yu LIU, Chang LIU, Zikai LI, Mengqiang WU. Research progress in the preparation of silicon-carbons anode by chemical vapor deposition[J]. Energy Storage Science and Technology, 2025, 14(9): 3354-3372.
Fig.3
(a) SEM images of nano silicon/graphite composite electrodes; (b) Cyclic behavior of composite electrode containing 20% nano silicon in EC∶DMC (1∶1), 1 mol/L LiPF6, 2% VC[52]; (c) Hybrid manufacturing processes for SGC; (d) Reversible discharge capacity and cycle diagram of PG, SG, SGC, 9%-SGC and B-Si/G for 100 cycles at 0.5 C[53]; (e) Increased rate capacity of SGC from 0.2 C to 5 C compared to PG, SG and B-Si/G; (f) Schematic illustration of the synthesis process of the p-SGC composites; (g) Cycling performance of NG, PG, n-SGC, p'-SGC, p-SGC and p-SGC-25% electrodes at 0.2 C[54]"
Fig.4
(a) A schematic of the silicon/carbon nanotube hybrid nanostructure prepared by growing an initial vertically aligned carbon nanotube using a liquid injection CVD, followed by the subsequent deposition of silicon; (b) Discharge/charge capacity and coulomb efficiency maps for 25 cycles[21]; (c) Schematic diagram of fabrication of a silicon nanowire array on a carbon nanotube (SiNW-CNT) array on a collector (stainless steel substrate); (d) The area capacities of Si NW-CNT and Si NWs as working electrodes were compared at 0.05 C (210 mA/g) in the first cycle and 0.5 C (2100 mA/g) in the remaining cycles at a constant current between 0.02 and 1.5 V[61]; (e)Si/CNTs manufacturing process diagram; (f) Cycle performance of soft pack batteries at 0.5 C (Si/CNTsS/ Graphite vs NCA and graphite vs LCO) [62]; (g) A schematic diagram for the synthesis of GC@Si-C microspheres; (h) long cycling performance at 0.5 A/g; (i) 1 C cycling performance of the GC@Si-2/G||NCM811 full cell"
Fig.5
(a) Schematic diagram of the synthesis method of ACSC composites; (b) Cyclic performance of ACS0.48C (1 C=1700 mAh/g); (c) Silicon loading behavior determined by the surface morphology and pore structure of the carbon carrier; (d) Schematic diagram of HC-0.8@Si@C composite material; (e) rate performance of HC-1@Si@C、HC-0.8@Si@C和HC-0.6@Si@C (1 C = 1500 mAh/g); (f) Cycle performance at 0.2 C"
Fig.6
(a) Schematic diagram of the CVD device, where a) is an automatic flow controller; b) and c) are manual flow controllers; d) and e) are digital flowmeters; f) and g) are stainless steel source bottles; h) the reaction tube; i) The tubular insert is aligned with the hot area of the furnace; j) for the furnace; k) oil bubbler[73]; (b) Experimental setup of silicon CVD on carbon fiber substrate in microwave plasma CVD reactor[71]; (c) Schematic diagram of the formation of silicon nanocomposite particles assembled from the bottom up; (d) The relationship between the reversible delithiation capacity and coulomb efficiency of the C-Si particle electrode and the number of cycles compared with the theoretical capacity of graphite[74]; (e) Structural diagram of C/SiNW/GM composites; (f) Long cycle and rate performance of C/SiNW/GM[40]"
Fig.7
(a) Schematic diagram of LPCVD and PECVD processes; (b) The full battery of NCA vs PECVD-Si-SWCNT cycles at 40% DOD, and the charge and discharge ratios are C/2 and 2C/3, respectively; (c) Simulation of the behaviour of silicon growth inhibitors; (d) 110 Ah prismatic battery using C (5)Si-G/Gra/NCM811[76]; (e) A: Schematic diagram of the decomposition of silane into nanoporous carbon particles by the CVD process; B: Diagram of a tube furnace with toner and silane flowing from right to left[77]"
[1] | STADIE N P, WANG S T, KRAVCHYK K V, et al. Zeolite-templated carbon as an ordered microporous electrode for aluminum batteries[J]. ACS Nano, 2017, 11(2): 1911-1919. DOI: 10.1021/acsnano.6b07995. |
[2] | THACKERAY M M, WOLVERTON C, ISAACS E D. Electrical energy storage for transportation—Approaching the limits of, and going beyond, lithium-ion batteries[J]. Energy & Environmental Science, 2012, 5(7): 7854-7863. DOI: 10.1039/C2EE21892E. |
[3] | SHARMA R A, SEEFURTH R N. Thermodynamic properties of the lithium-silicon system[J]. Journal of the Electrochemical Society, 1976, 123(12): 1763-1768. DOI: 10.1149/1.2132692. |
[4] | TAO W, WANG P, YOU Y, et al. Strategies for improving the storage performance of silicon-based anodes in lithium-ion batteries[J]. Nano Research, 2019, 12(8): 1739-1749. DOI: 10. 1007/s12274-019-2361-4. |
[5] | CHOI S, KWON T W, COSKUN A, et al. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries[J]. Science, 2017, 357(6348): 279-283. DOI: 10.1126/science.aal4373. |
[6] | WU H, CUI Y. Designing nanostructured Si anodes for high energy lithium ion batteries[J]. Nano Today, 2012, 7(5): 414-429. DOI: 10.1016/j.nantod.2012.08.004. |
[7] | WANG C, WEN J C, LUO F, et al. Anisotropic expansion and size-dependent fracture of silicon nanotubes during lithiation[J]. Journal of Materials Chemistry A, 2019, 7(25): 15113-15122. DOI: 10.1039/C9TA00519F. |
[8] | PAN H, WANG L, SHI Y, et al. A solid-state lithium-ion battery with micron-sized silicon anode operating free from external pressure[J]. Nature Communications, 2024, 15: 2263. DOI: 10. 1038/s41467-024-46472-9. |
[9] | KANG W, ZHANG Q X, JIA Y F, et al. Enhancing the cycling stability of commercial silicon nanoparticles by carbon coating and thin layered single-walled carbon nanotube webbing[J]. Journal of Power Sources, 2024, 602: 234338. DOI: 10.1016/j.jpowsour.2024.234338. |
[10] | 梁晓杜, 丁玉峰. 锂离子电池用硅基材料的研究进展[J]. 船电技术, 2024, 44(12): 87-91, 96. DOI: 10.13632/j.meee.2024.12.021. |
LIANG X D, DING Y F. Research progress of silicon-based materials for lithium-ion batteries[J]. Marine Electric & Electronic Engineering, 2024, 44(12): 87-91, 96. DOI: 10.13632/j.meee. 2024. 12.021. | |
[11] | 王娟, 张香兰. 锂离子电池硅碳负极材料的应用研究进展[J]. 化学工业与工程, 2024, 41(6): 75-90. DOI: 10.13353/j.issn. 1004. 9533. 20230508. |
WANG J, ZHANG X L. Research progress on the application of silicon-carbon anode materials in lithium-ion batteries[J]. Chemical Industry and Engineering, 2024, 41(6): 75-90. DOI: 10. 13353/j.issn.1004.9533.20230508. | |
[12] | LIU X H, ZHONG L, HUANG S, et al. Size-dependent fracture of silicon nanoparticles during lithiation[J]. ACS Nano, 2012, 6(2): 1522-1531. DOI: 10.1021/nn204476h. |
[13] | KO M, CHAE S, JEONG S, et al. Elastic a-silicon nanoparticle backboned graphene hybrid as a self-compacting anode for high-rate lithium ion batteries[J]. ACS Nano, 2014, 8(8): 8591-8599. DOI: 10.1021/nn503294z. |
[14] | AN Y L, TIAN Y, ZHANG Y C, et al. Two-dimensional silicon/carbon from commercial alloy and CO2 for lithium storage and flexible Ti3C2Tx MXene-based lithium-metal batteries[J]. ACS Nano, 2020, 14(12): 17574-17588. DOI: 10.1021/acsnano.0c08336. |
[15] | LI Y Z, YAN K, LEE H W, et al. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes[J]. Nature Energy, 2016, 1: 15029. DOI: 10.1038/nenergy. 2015.29. |
[16] | ZHANG Z D, ZHOU H P, FENG T T, et al. A plasma strategy for high-quality Si/C composite anode: From tailoring the current collector to preparing the active materials[J]. Electrochimica Acta, 2020, 347: 136222. DOI: 10.1016/j.electacta.2020.136222. |
[17] | ZHANG Z D, ZHOU H P, XUE W D, et al. Nitrogen-plasma doping of carbon film for a high-quality layered Si/C composite anode[J]. Journal of Colloid and Interface Science, 2022, 605: 463-471. DOI: 10.1016/j.jcis.2021.06.147. |
[18] | LI X H, WU M Q, FENG T T, et al. Graphene enhanced silicon/carbon composite as anode for high performance lithium-ion batteries[J]. RSC Advances, 2017, 7(76): 48286-48293. DOI: 10. 1039/C7RA09818A. |
[19] | QIN J G, WU M Q, FENG T T, et al. High rate capability and long cycling life of graphene-coated silicon composite anodes for lithium ion batteries[J]. Electrochimica Acta, 2017, 256: 259-266. DOI: 10.1016/j.electacta.2017.10.022. |
[20] | WANG R, CAO J W, XU C Y, et al. Low-temperature electrolytes based on linear carboxylic ester co-solvents for SiOx/graphite composite anodes[J]. RSC Advances, 2023, 13(20): 13365-13373. DOI: 10.1039/D3RA01111A. |
[21] | WANG W, KUMTA P N. Nanostructured hybrid silicon/carbon nanotube heterostructures: Reversible high-capacity lithium-ion anodes[J]. ACS Nano, 2010, 4(4): 2233-2241. DOI: 10.1021/nn901632g. |
[22] | TAO H C, XIONG L Y, ZHU S C, et al. Porous Si/C/reduced graphene oxide microspheres by spray drying as anode for Li-ion batteries[J]. Journal of Electroanalytical Chemistry, 2017, 797: 16-22. DOI: 10.1016/j.jelechem.2017.05.010. |
[23] | ZHANG J Q, CHEN Y F, CHEN X Q, et al. Preparation of graphene-like carbon attached porous silicon anode by magnesiothermic and nickel-catalyzed reduction reactions[J]. Ionics, 2020, 26(12): 5941-5950. DOI: 10.1007/s11581-020-03746-8. |
[24] | CABELLO M, GUCCIARDI E, HERRÁN A, et al. Towards a high-power Si@graphite anode for lithium ion batteries through a wet ball milling process[J]. Molecules, 2020, 25(11): 2494. DOI: 10. 3390/molecules25112494. |
[25] | WAN W W, MAI Y, GUO D, et al. A novel Sol-gel process to encapsulate micron silicon with a uniformly Ni-doped graphite carbon layer by coupling for use in lithium ion batteries[J]. Synthetic Metals, 2021, 274: 116717. DOI: 10.1016/j.synthmet. 2021.116717. |
[26] | GE M Y, LU Y H, ERCIUS P, et al. Large-scale fabrication, 3D tomography, and lithium-ion battery application of porous silicon[J]. Nano Letters, 2014, 14(1): 261-268. DOI: 10.1021/nl403923s. |
[27] | CHO G B, CHOI S Y, NOH J P, et al. Dependence of milling time on electrochemical properties of nano Si electrodes prepared by ball-milling[J]. Journal of Nanoscience and Nanotechnology, 2011, 11(7): 6262-6265. DOI: 10.1166/jnn.2011.4332. |
[28] | LI Z J, DU M J, GUO X, et al. Research progress of SiOx-based anode materials for lithium-ion batteries[J]. Chemical Engineering Journal, 2023, 473: 145294. DOI: 10.1016/j.cej.2023.145294. |
[29] | WU J X, DONG Q W, ZHANG Q, et al. Fundamental understanding of the low initial coulombic efficiency in SiOx anode for lithium-ion batteries: Mechanisms and solutions[J]. Advanced Materials, 2024, 36(33): 2405751. DOI: 10.1002/adma. 202405751. |
[30] | ZHOU H P, YANG B, ZHANG Z D, et al. Fastly PECVD-Grown vertical carbon nanosheets for a composite SiOx-C anode material[J]. Applied Surface Science, 2022, 605: 154627. DOI: 10.1016/j.apsusc.2022.154627. |
[31] | ZHOU H, ZHOU H P, YANG B, et al. Carbon nano-Onions/tubes catalyzed by Ni nanoparticles on SiOx for superior lithium storage[J]. Applied Surface Science, 2023, 640: 158355. DOI: 10.1016/j.apsusc.2023.158355. |
[32] | ZHOU H, YANG B, ZHOU H P, et al. Carbon shells and carbon nanotubes jointly modified SiOx anodes for superior lithium storage[J]. ACS Applied Energy Materials, 2024, 7(22): 10307-10316. DOI: 10.1021/acsaem.4c01513. |
[33] | YUE H C, ZHANG S, FENG T T, et al. Understanding of the mechanism enables controllable chemical prelithiation of anode materials for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(45): 53996-54004. DOI: 10.1021/acsami. 1c16842. |
[34] | LI H D, LI H Y, LAI Y Z, et al. Revisiting the preparation progress of nano-structured Si anodes toward industrial application from the perspective of cost and scalability[J]. Advanced Energy Materials, 2022, 12(7): 2102181. DOI: 10.1002/aenm.202102181. |
[35] | 涂志强, 侯果林, 林伟国, 等. 锂离子电池硅碳负极材料应用前景光明[J]. 中国石化, 2024(4): 42-45. |
TU Z Q, HOU G L, LIN W G, et al. Silicon-carbon anode materials for lithium ion batteries have bright application prospects[J]. Sinopec Monthly, 2024(4): 42-45. | |
[36] | 蒋运才, 曹昌蝶, 刘岚君, 等. 化学气相沉积法制备二维材料研究进展[J]. 化工新型材料, 2021, 49(11): 59-62. DOI: 10.19817/j.cnki.issn1006-3536.2021.11.013. |
JIANG Y C, CAO C D, LIU L J, et al. Research progress on 2D material prepared by chemical vapor deposition[J]. New Chemical Materials, 2021, 49(11): 59-62. DOI: 10.19817/j.cnki.issn1006-3536.2021.11.013. | |
[37] | ZHANG T, FU L. Controllable chemical vapor deposition growth of two-dimensional heterostructures[J]. Chem, 2018, 4(4): 671-689. DOI: 10.1016/j.chempr.2017.12.006. |
[38] | LIU X, CAO L Z, GUO Z, et al. A review of perovskite photovoltaic materials' synthesis and applications via chemical vapor deposition method[J]. Materials, 2019, 12(20): 3304. DOI: 10. 3390/ma12203304. |
[39] | WILSON A M, DAHN J R. Lithium insertion in carbons containing nanodispersed silicon[J]. Journal of the Electrochemical Society, 1995, 142(2): 326-332. DOI: 10.1149/1.2043994. |
[40] | LIU B, HUANG P, XIE Z Y, et al. Large-scale production of a silicon nanowire/graphite composites anode via the CVD method for high-performance lithium-ion batteries[J]. Energy & Fuels, 2021, 35(3): 2758-2765. DOI: 10.1021/acs.energyfuels.0c03725. |
[41] | ZHANG X Y, HAYASHIDA R, TANAKA M, et al. Synthesis of carbon-coated silicon nanoparticles by induction thermal plasma for lithium ion battery[J]. Powder Technology, 2020, 371: 26-36. DOI: 10.1016/j.powtec.2020.05.084. |
[42] | PARK S W, HA J H, CHO B W, et al. Designing of high capacity Si nanosheets anode electrodes for lithium batteries[J]. Surface and Coatings Technology, 2021, 421: 127358. DOI: 10.1016/j.surfcoat.2021.127358. |
[43] | QI C L, LI S P, YANG Z P, et al. Suitable thickness of carbon coating layers for silicon anode[J]. Carbon, 2022, 186: 530-538. DOI: 10.1016/j.carbon.2021.10.062. |
[44] | HAN J, TANG X N, GE S F, et al. Si/C particles on graphene sheet as stable anode for lithium-ion batteries[J]. Journal of Materials Science & Technology, 2021, 80: 259-265. DOI: 10. 1016/j.jmst.2020.11.054. |
[45] | SU H P, LI X R, LIU C W, et al. Scalable synthesis of micrometer-sized porous silicon/carbon composites for high-stability lithium-ion battery anodes[J]. Chemical Engineering Journal, 2023, 451: 138394. DOI: 10.1016/j.cej.2022.138394. |
[46] | ŁACH Ł, SVYETLICHNYY D. Recent progress in heat and mass transfer modeling for chemical vapor deposition processes[J]. Energies, 2024, 17(13): 3267. DOI: 10.3390/en17133267. |
[47] | CHAE S, CHOI S H, KIM N, et al. Integration of graphite and silicon anodes for the commercialization of high-energy lithium-ion batteries[J]. Angewandte Chemie International Edition, 2020, 59(1): 110-135. DOI: 10.1002/anie.201902085. |
[48] | LI P, KIM H, MYUNG S T, et al. Diverting exploration of silicon anode into practical way: A review focused on silicon-graphite composite for lithium ion batteries[J]. Energy Storage Materials, 2021, 35: 550-576. DOI: 10.1016/j.ensm.2020.11.028. |
[49] | WETJEN M, PRITZL D, JUNG R, et al. Differentiating the degradation phenomena in silicon-graphite electrodes for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(12): A2840-A2852. DOI: 10.1149/2.1921712jes. |
[50] | YAN Z L, YI S, LI X D, et al. A scalable silicon/graphite anode with high silicon content for high-energy lithium-ion batteries[J]. Materials Today Energy, 2023, 31: 101225. DOI: 10.1016/j.mtener. 2022.101225. |
[51] | ZHANG Y, JIANG Y Z, LI Y D, et al. Preparation of nanographite sheets supported Si nanoparticles by in situ reduction of fumed SiO2 with magnesium for lithium ion battery[J]. Journal of Power Sources, 2015, 281: 425-431. DOI: 10.1016/j.jpowsour. 2015. 02.020. |
[52] | HOLZAPFEL M, BUQA H, SCHEIFELE W, et al. A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion[J]. Chemical Communications, 2005(12): 1566-1568. DOI: 10.1039/B417492E. |
[53] | KO M, CHAE S, MA J, et al. Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries[J]. Nature Energy, 2016, 1: 16113. DOI: 10.1038/nenergy.2016.113. |
[54] | ZHU S J, LIN Y F, YAN Z L, et al. Novel design of uniform Si@graphite@C composite as high-performance Li-ion battery anodes[J]. Electrochimica Acta, 2021, 377: 138092. DOI: 10. 1016/j.electacta.2021.138092. |
[55] | WANG F L, CHEN G, ZHANG N, et al. Engineering of carbon and other protective coating layers for stabilizing silicon anode materials[J]. Carbon Energy, 2019, 1(2): 219-245. DOI: 10.1002/cey2.24. |
[56] | LI P, HWANG J Y, SUN Y K. Nano/microstructured silicon-graphite composite anode for high-energy-density Li-ion battery[J]. ACS Nano, 2019, 13(2): 2624-2633. DOI: 10.1021/acsnano. 9b00169. |
[57] | NAZARIAN-SAMANI M, NAZARIAN-SAMANI M, HAGHIGHAT-SHISHAVAN S, et al. Efficient stress alleviation and interface regulation in Cu4SiP8-CNT hybrid for ultra-durable Li and Na storage[J]. Nano Energy, 2021, 86: 106134. DOI: 10.1016/j.nanoen.2021.106134. |
[58] | SCHULZE M C, BELSON R M, KRAYNAK L A, et al. Electrodeposition of Sb/CNT composite films as anodes for Li- and Na-ion batteries[J]. Energy Storage Materials, 2020, 25: 572-584. DOI: 10.1016/j.ensm.2019.09.025. |
[59] | NGUYEN T, SU Y S. A self-assembled carbon nanotube/silicon composite battery anode stabilized with chemically reduced graphene oxide sheets[J]. Materials & Design, 2024, 240: 112861. DOI: 10.1016/j.matdes.2024.112861. |
[60] | WANG S Z, LIAO J X, WU M Q, et al. High rate and long cycle life of a CNT/rGO/Si nanoparticle composite anode for lithium-ion batteries[J]. Particle & Particle Systems Characterization, 2017, 34(10): 1700141. DOI: 10.1002/ppsc.201700141. |
[61] | LI X L, CHO J H, LI N, et al. Carbon nanotube-enhanced growth of silicon nanowires as an anode for high-performance lithium-ion batteries[J]. Advanced Energy Materials, 2012, 2(1): 87-93. DOI: 10.1002/aenm.201100519. |
[62] | ZHAO H, TU N, ZHANG W B, et al. Novel synthesis of silicon/carbon nanotubes microspheres as anode additives through chemical vapor deposition in fluidized bed reactors[J]. Scripta Materialia, 2021, 192: 49-54. DOI: 10.1016/j.scriptamat. 2020. 09.048. |
[63] | LIU C, ZHOU H P, ZHOU H, et al. Highly Si loading on three-dimensional carbon skeleton via CVD method for a stable SiC composite anode[J]. Journal of Energy Storage, 2025, 116: 116083. DOI: 10.1016/j.est.2025.116083. |
[64] | LI K X, CHEN W, YANG H P, et al. Mechanism of biomass activation and ammonia modification for nitrogen-doped porous carbon materials[J]. Bioresource Technology, 2019, 280: 260-268. DOI: 10.1016/j.biortech.2019.02.039. |
[65] | XU X T, MU X, HUANG T, et al. Robust silicon/carbon composite anode materials with high tap density and excellent cycling performance for lithium-ion batteries[J]. Journal of Power Sources, 2024, 614: 234992. DOI: 10.1016/j.jpowsour. 2024. 234992. |
[66] | KIM K N, KANG S C, SEO S W, et al. Effects of macrostructure of carbon support in preparation of C/Six/C anode materials for lithium-ion batteries via silane decomposition[J]. Carbon Letters, 2024, 34(9): 2305-2316. DOI: 10.1007/s42823-024-00756-8. |
[67] | SCHÄUFELE R S, VAZQUEZ-PUFLEAU M, PENDASHTEH A, et al. Controlling reaction paths for ultra-fast growth of inorganic nanowires floating in the gas phase[J]. Nanoscale, 2022, 14(1): 55-64. DOI: 10.1039/D1NR07261G. |
[68] | XIAO Y M, YI S, YAN Z L, et al. Benchmarking the match of porous carbon substrate pore volume on silicon anode materials for lithium-ion batteries[J]. Small, 2024, 20(45): 2404440. DOI: 10.1002/smll.202404440. |
[69] | HU M F, WU H Z, ZHANG G J. High-performance silicon/graphite anode prepared by CVD using SiCl4 as precursor for Li-ion batteries[J]. Chemical Physics Letters, 2023, 833: 140917. DOI: 10.1016/j.cplett.2023.140917. |
[70] | HUANG P, LIU B, ZHANG J L, et al. Silicon/carbon composites based on natural microcrystalline graphite as anode for lithium-ion batteries[J]. Ionics, 2021, 27(5): 1957-1966. DOI: 10.1007/s11581-021-03977-3. |
[71] | WOLF H, PAJKIC Z, GERDES T, et al. Carbon-fiber-silicon-nanocomposites for lithium-ion battery anodes by microwave plasma chemical vapor deposition[J]. Journal of Power Sources, 2009, 190(1): 157-161. DOI: 10.1016/j.jpowsour.2008.07.035. |
[72] | CHEN Z D, SOLTANI A, CHEN Y G, et al. Emerging organic surface chemistry for Si anodes in lithium-ion batteries: Advances, prospects, and beyond[J]. Advanced Energy Materials, 2022, 12(32): 2200924. DOI: 10.1002/aenm. 202200924. |
[73] | WILSON A M, WAY B M, DAHN J R, et al. Nanodispersed silicon in pregraphitic carbons[J]. Journal of Applied Physics, 1995, 77(6): 2363-2369. DOI: 10.1063/1.358759. |
[74] | MAGASINSKI A, DIXON P, HERTZBERG B, et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach[J]. Nature Materials, 2010, 9(4): 353-358. DOI: 10. 1038/nmat2725. |
[75] | FORNEY M W, DILEO R A, RAISANEN A, et al. High performance silicon free-standing anodes fabricated by low-pressure and plasma-enhanced chemical vapor deposition onto carbon nanotube electrodes[J]. Journal of Power Sources, 2013, 228: 270-280. DOI: 10.1016/j.jpowsour.2012.11.109. |
[76] | SUNG J, KIM N, MA J, et al. Subnano-sized silicon anode via crystal growth inhibition mechanism and its application in a prototype battery pack[J]. Nature Energy, 2021, 6(12): 1164-1175. DOI: 10.1038/s41560-021-00945-z. |
[77] | HAN Z N, WILD J F, CHEN J J, et al. Modeling silane deposition in nanoporous carbon for high-capacity Si/C composite anodes[J]. Energy Material Advances, 2024, 5: 111. DOI: 10.34133/energymatadv.0111. |
[78] | ZHAN X, LI M, LI S, et al. Challenges and opportunities towards silicon-based all-solid-state batteries[J]. Energy Storage Materials, 2023, 61: 102875. DOI: 10.1016/j.ensm.2023.102875. |
[79] | HUO H Y, JANEK J. Silicon as emerging anode in solid-state batteries[J]. ACS Energy Letters, 2022, 7(11): 4005-4016. DOI: 10.1021/acsenergylett.2c01950. |
[80] | LI J C, DOZIER A K, LI Y C, et al. Crack pattern formation in thin film lithium-ion battery electrodes[J]. Journal of the Electrochemical Society, 2011, 158(6): A689. DOI: 10.1149/1.3574027. |
[81] | ZHOU M, LI X L, WANG B, et al. High-performance silicon battery anodes enabled by engineering graphene assemblies[J]. Nano Letters, 2015, 15(9): 6222-6228. DOI: 10.1021/acs.nanolett. 5b02697. |
[82] | FERRARESI G, EL KAZZI M, CZORNOMAZ L, et al. Electrochemical performance of all-solid-state Li-ion batteries based on garnet electrolyte using silicon as a model electrode[J]. ACS Energy Letters, 2018, 3(4): 1006-1012. DOI: 10.1021/acsenergylett.8b00264. |
[83] | CHEN C, LI Q, LI Y Q, et al. Sustainable interfaces between Si anodes and garnet electrolytes for room-temperature solid-state batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(2): 2185-2190. DOI: 10.1021/acsami.7b16385. |
[84] | PING W W, YANG C P, BAO Y H, et al. A silicon anode for garnet-based all-solid-state batteries: Interfaces and nanomechanics[J]. Energy Storage Materials, 2019, 21: 246-252. DOI: 10.1016/j.ensm. 2019.06.024. |
[1] | Zheng CHEN, Jingyuan HU, Zhigang ZHAO, Jiangwei SHEN, Xuelei XIA, Fuxing WEI. Thermal characteristics study and optimization of air-cooling structures for dual-system battery packs [J]. Energy Storage Science and Technology, 2025, 14(9): 3463-3475. |
[2] | Bin YANG, Jun YANG, Lang XU, Haowei WEN, Dengfeng LIU, Dianbo RUAN. Ball-head indentation-induced safety evaluation of capacitive lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(8): 3090-3099. |
[3] | Wei WANG, Huishi LIANG, Miangang LI, Kui ZHOU, Wei WANG, Ziyao WANG, Zinan SHI. Method for monitoring irreversible lithium plating in lithium batteries using transfer learning [J]. Energy Storage Science and Technology, 2025, 14(7): 2698-2706. |
[4] | Zheng CHEN, Gongdong DUO, Jiangwei SHEN, Shiquan SHEN, Yu LIU, Fuxing WEI. State of health estimation for lithium battery based on incremental capacity analysis and VMD-GWO-KELM [J]. Energy Storage Science and Technology, 2025, 14(6): 2476-2487. |
[5] | Jingjing RUAN, Xiangkun WU, Yonghui LI, Chongchong ZHAO, Shenshen LI, Tongfei WANG, Shengjie LIANG, Guihong GAO. Preparation and performance studies of low-cost graphite thick dry electrodes [J]. Energy Storage Science and Technology, 2025, 14(6): 2248-2255. |
[6] | Dandan HAN, Wuwei ZHANG, Liang ZHANG, Zongjiang WANG. Design and electrochemical performance of LiMn1-y Fe y PO4/C cathode materials with a core-shell structure [J]. Energy Storage Science and Technology, 2025, 14(6): 2215-2222. |
[7] | Zhoulan ZENG, Lei SHANG, Zhijin HU, Zongfan WANG, Xiaochao XIN, Ying LIU. Li5FeO4@C high capacity prelithium cathode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1875-1883. |
[8] | Yingjian CHEN, Shang WU, Yuancheng CAO, Baoshuai DU, Zhenxing WANG, Zhongwen OUYANG, Shun TANG. Application of magnetic separation in the recycling of cathode and anode materials from spent lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1918-1927. |
[9] | Xiaolan WU, Pengjie MA, Zhifeng BAI, Chenglong LIU, Guifang GUO, Jinhua ZHANG. A kind of intelligent PID double-layer active balancing control method for lithium-ion battery pack [J]. Energy Storage Science and Technology, 2025, 14(3): 1150-1159. |
[10] | Nan LI, Jing MA, Tingxiu HUANG, Yixing SHEN, Min SHEN, Yiyi JIANG, Tao HONG, Guoqiang MA, Zifeng MA. Research progress on nitrile compounds in high potential electrolytes [J]. Energy Storage Science and Technology, 2025, 14(3): 997-1009. |
[11] | Chencheng XU, Zhan WANG, Shuang LI, Jiangmin JIANG, Zhicheng JU. Research progress and engineering application prospects of prelithiation technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 930-946. |
[12] | Liping ZHOU, Deqing ZHOU, Fenghua ZHENG, Qichang PAN, Sijiang HU, Yongjie JIANG, Hongqiang WANG, Qingyu LI. Preparation and application of Si@void@C composite anode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 1115-1122. |
[13] | Jiabo LI, Zhixuan WANG, Di TIAN, Zhonglin SUN. Prediction method for remaining service life of lithium batteries using SSA-LSTM combination under variable mode decomposition [J]. Energy Storage Science and Technology, 2025, 14(2): 659-670. |
[14] | Jianru ZHANG, Qiyu WANG, Yinghui JI, Xin GAO, Xiqian YU, Hong LI. Application of Auger electron spectroscopy in the analysis of lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(2): 755-769. |
[15] | Heyu LI, Xiaobo HONG, Zihan CHEN, Dianbo RUAN. The effect of porous heat insulation plate on the heat spread barrier of lithium-ion battery module [J]. Energy Storage Science and Technology, 2025, 14(2): 479-487. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||