储能科学与技术

• XXXX •    

复合无机相变材料用于锂离子电池热管理性能模拟及优化设计

戴心怡1(), 孔得朋1(), 平平2   

  1. 1.中国石油大学(华东)机电工程学院
    2.中国石油大学(华东)化学化工学院,山东,青岛,266580
  • 收稿日期:2025-05-21 修回日期:2025-06-24
  • 通讯作者: 孔得朋 E-mail:daixinyi1028@163.com;kongdepeng@upc.edu.cn
  • 作者简介:戴心怡(1997),女,博士研究生在读,研究方向为锂离子电池热管理与热安全技术,E-mail:daixinyi1028@163.com
  • 基金资助:
    国家自然科学基金(U22A20168);国家自然科学基金(52174225);山东省杰出青年科学基金(ZR2023YQ044);山东省泰山学者项目(tsqn202408092)

Simulation and Optimal Design of Using Composite Inorganic Phase Change Materials for Lithium-ion Batteries Thermal Management

Xinyi Dai1(), Depeng Kong1(), Ping Ping2   

  1. 1.College of Mechanical and Electrical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong Provence, China
    2.College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong Provence, China
  • Received:2025-05-21 Revised:2025-06-24
  • Contact: Depeng Kong E-mail:daixinyi1028@163.com;kongdepeng@upc.edu.cn

摘要:

在锂离子电池技术飞速发展的当下,电池热管理技术已成为决定电池性能提升与安全应用的关键因素,在热管理介质研发领域,无机相变材料 (Inorganic Phase Change Material, IPCM) 凭借其优秀的热安全性逐渐成为研究热点。然而,传统IPCM存在融化泄漏、热稳定性差等缺陷,难以满足复杂电池系统的实际需求。本研究提出了一种具有固定形状的复合无机相变材料 (Composite Inorganic Phase Change Material, CIPCM),在微观层面合成SiO2外壳封装提高了IPCM的热稳定性,在宏观尺度采用共聚物柔性骨架用以维持IPCM形状与结构的固定。同时,将材料嵌入COMSOL仿真模型计算中,以获取CIPCM在多电池模组中应用的有效参数组合和系统性的热管理性能数据。研究利用COMSOL对所制备的CIPCM用于锂离子电池模组热管理效果进行了模拟研究,分别探究了不同充放电速率、CIPCM厚度以及高低温环境温度对电池模组散热的影响。研究表明,与空气冷却结果相比,CIPCM包裹电池进行吸热可帮助快速抑制电池表面温升;在一定范围内增大CIPCM厚度,可提高CIPCM作用效率,当CIPCM厚度从2 mm增加到5 mm,电池散热情况得到了显著改善;当CIPCM厚度大于5 mm后,增加用量不再具有明显正向效果。此外,CIPCM的使用效果也受环境温度影响,随着环境温度的增加,CIPCM热管理效果下降,需要根据实际应用条件灵活调整CIPCM的用量和使用策略。本研究为基于IPCM的热管理方案提供了一定的设计参考和数据支持,同时突破传统实验手段的局限性,加速了CIPCM在大规模电池模组中的应用进程。

关键词: 锂离子电池, 无机相变材料, 热管理系统, 参数数值模拟

Abstract:

In the development of thermal management technologies for lithium-ion batteries, inorganic phase change materials (IPCM) have gained increasing attention due to their high thermal safety. However, traditional IPCM has drawbacks such as melting leakage and poor thermal stability, making it difficult to meet the actual requirements of complex battery systems. This study proposes a shape-stabilized composite inorganic phase change material (CIPCM), where the IPCM is encapsulated at the microscale by a SiO2 shell to enhance thermal stability and supported at the macroscale by a copolymer flexible framework to maintain structural integrity. Meanwhile, CIPCM is embedded in the calculation of the COMSOL simulation model to obtain the effective parameter combination and systematic thermal management performance results of CIPCM-based multi-cell modules. Employing COMSOL, the thermal management performance of CIPCM applied to lithium-ion battery modules was simulated. The effects of various charge/discharge rates, CIPCM thickness, and ambient temperatures on the battery temperature controlling and heat dissipation of CIPCM were comprehensively investigated. The results demonstrate that compared to natural air convection, passive cooling by attaching CIPCM to battery surfaces significantly reduces peak surface temperatures and slows down the temperature rising rate. In addition, increasing CIPCM thickness within a certain range would decrease the maximum battery surface temperature. With the increase of the CIPCM thickness from 2 mm to 5 mm, the battery cooling performance was significantly improved; however, when the CIPCM thickness exceeded 5 mm, further increasing the thickness resulted in less pronounced cooling enhancement. Moreover, the efficacy of CIPCM diminishes with ambient temperatures, necessitating adjustments in CIPCM usage and design based on practical operating conditions. This research provides certain design references and data support for the thermal management strategy based on IPCM. Meanwhile, it breaks through the limitations of traditional experimental methods and promotes the application of CIPCM in large-scale battery modules.

Key words: Lithium-ion batteries, Inorganic phase change materials, Battery thermal management system, Parametric numerical simulation

中图分类号: