• XXXX •
郭鹏宇1,2(), 张明杰2, 程宜风3, 马俊华2, 陈浩2, 李昌豪3, 魏斌2, 巨星1(
)
收稿日期:
2025-07-22
修回日期:
2025-08-25
通讯作者:
巨星
E-mail:120232202486@ncepu.edu.cn;scottju@ncepu.edu.cn
作者简介:
郭鹏宇(2001—),男,硕士研究生,研究方向:电池高效热管理策略,E-mail:120232202486@ncepu.edu.cn;
基金资助:
Peng-yu GUO1,2(), Ming-jie ZHANG2, Yi-feng CHENG3, Jun-hua MA2, Hao CHEN2, Chang-hao LI3, Bin WEI2, Xing JU1(
)
Received:
2025-07-22
Revised:
2025-08-25
Contact:
Xing JU
E-mail:120232202486@ncepu.edu.cn;scottju@ncepu.edu.cn
摘要:
针对传统风冷和液冷板式储能电池模组存在的模组温升过大和电池上下温度不均匀问题,设计了1并5串的280Ah浸没式液冷电池模组,开展了电池模组流动策略仿真与实验研究。研究结果表明:在模组设计及冷却液进出口选择方面,通过对比底板式和侧板式电池模组的四种冷却液进出口方式,发现采用底板式左下进右上出方式的电池模组热性能最好;在自然对流条件下电池模组均温性分析方面,发现半浸没无法改善电池本身的温度均匀性,全浸没具有最好的单体及模组均温性;在冷却液进口流量方面,发现强制流动能大幅降低模组温升,模组最高温度、温差及温升均在冷却液流量为6L/min时出现极小值,分别为30.55℃、4.15℃及5.59℃。通过对流换热系数h和冷却液带走热量Qf的分析,发现在强制流动条件下存在三个“流量区”,其中在中等流量区存在一个“最佳流量值”,使得在该流量下电池模组热性能最好。综上,本文研究的浸没式液冷电池模组最佳流动策略为:采用底板式左下进右上出的进出口方式,电池模组全浸没且进口流量设置为6L/min。
中图分类号:
郭鹏宇, 张明杰, 程宜风, 马俊华, 陈浩, 李昌豪, 魏斌, 巨星. 280Ah浸没式液冷电池模组流动传热策略研究[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2025.0665.
Peng-yu GUO, Ming-jie ZHANG, Yi-feng CHENG, Jun-hua MA, Hao CHEN, Chang-hao LI, Bin WEI, Xing JU. Research On Flow Heat Transfer Strategy For 280Ah Immersion Liquid-Cooled Battery Module[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0665.
[1] | Dina A. Elalfy, Eid Gouda, Mohamed Fawzi Kotb, et al. Comprehensive review of energy storage systems technologies, objectives, challenges, and future trends[J]. Energy Strategy Reviews, 2024, 54: 101482. |
[2] | Jintang Zhu, Guozeng Feng, Weiming Zhou, et al. Simulation analysis and optimization of containerized energy storage battery thermal management system[J]. Journal of Energy Storage, 2024, 97: 112870. |
[3] | 周海洋,张振东,盛雷,等.储能用锂电池浸没式热性能调控仿真及热安全实验研究[J/OL].储能科学与技术,1-11[2025-04-02].https://doi.org/10.19799/j.cnki.2095-4239.2024.1056. |
ZHOU Haiyang, ZHANG Zhendong, SHENG Lei, et al. Simulation of immersion thermal performance regulation and thermal safety experimental study for energy storage lithium batteries[J]. Energy Storage Science and Technology, 2025, 14(5): 1866-1874. | |
[4] | F. Feng, X. Hu, J. Liu, X. Lin, B. Liu, A review of equalization strategies for series battery packs: variables, objectives, and algorithms, Renew. Sustain. Energy Rev. 116 (2019) 109464, https://doi.org/10.1016/j.rser.2019.109464. |
[5] | S. Vashisht, D. Rakshit, S. Panchal, M. Fowler, R. Fraser, Quantifying the Effects of Temperature and Depth of Discharge on Li-Ion Battery Heat Generation: an Assessment of Resistance Models for Accurate Thermal Behavior Prediction, 2023, p. 445 https://doi.org/10.1149/MA2023-023445mtgabs, Meet. Abstr. MA2023-02. |
[6] | Y. Guo, Y. Qiu, B. Lei, Y. Wu, Y. Shi, W. Cao, H. Liu, F. Jiang, Modeling and analysis of liquid-cooling thermal management of an in-house developed 100 kW/500 kWh energy storage container consisting of lithium-ion batteries retired from electric vehicles, Appl. Therm. Eng. 232 (2023) 121111, https://doi.org/10.1016/j.applthermaleng.2023.121111. |
[7] | D. Gräf, J. Marschewski, L. Ibing, D. Huckebrink, M. Fiebrandt, G. Hanau, V. Bertsch, What drives capacity degradation in utility-scale battery energy storage systems? The impact of operating strategy and temperature in different grid applications, J. Energy Storage 47 (2022) 103533, https://doi.org/10.1016/j.est.2021.103533. |
[8] | D. Arora, A. El-Sharkawy, S. Panchal, Development of time-temperature analysis algorithm for estimation of lithium-ion battery useful life, in: SAE International,2024, https://doi.org/10.4271/2024-01-2191. |
[9] | ZHANG Y T, ZUO W, E J Q, et al. Performance comparison between straight channel cold plate and inclined channel cold plate for thermal management of a prismatic LiFePO4 battery[J]. Energy, 2022, 248: doi: 10.1016/j.energy.2022.123637. |
[10] | 刘彬, 胡子强,李夔宁,等.基于大平板热管的电池热管理实验及仿 真[J]. 储能科学与技术,2021,10(4): 1364-1373. |
LIU B, HU Z Q, LI K N, et al. Experimental and simulation on battery thermal management based on a large flat heat pipe[J]. Energy Storage Science and Technology, 2021, 10(4): 1364-1373. | |
[11] | Yang C,Liu Q,Liu M, et al.Investigation of the immersion cooling system for 280Ah LiFePO4 batteries: Effects of flow layouts and fluid types[J].Case Studies in Thermal Engineering,2024,61104922-104922. |
[12] | 李岳峰,徐卫潘,韦银涛,等.储能锂电池包浸没式液冷系统散热设计及热仿真分析[J].储能科学与技术,2024,13(10):3534-3544.DOI:10.19799/j.cnki.2095-4239.2024.0186. |
LI Yuefeng, XU Weipan, WEI Yintao, et al. Thermal design and simulation analysis of an immersing liquid cooling system for lithium | |
ions battery packs in energy storage applications[J]. Energy Storage Science and Technology, 2024, 13(10): 3534-3544 | |
[13] | 曾少鸿,吴伟雄,刘吉臻,等.锂离子电池浸没式冷却技术研究综述[J].储能科学与技术,2023,12(09):2888-2903.DOI:10.19799/j.cnki.2095-4239.2023.0269. |
ZENG Shaohong, WU Weixiong, LIU Jizhen, et al. A review of research on immersion cooling technology for lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(9): 2888-2903. | |
[14] | Haitao W,Tao T,Jun X, et al.Thermal performance of a liquid-immersed battery thermal management system for lithium-ion pouch batteries[J].Journal of Energy Storage,2022,46 |
[15] | 李岳峰,丁纬达,韦银涛,等.关键因素对储能浸没式锂电池包温度特性影响的研究[J].储能科学与技术,2025,14(01):152-161.DOI:10.19799/j.cnki.2095-4239.2024.0638. |
LI Yuefeng, DING Weida, WEI Yintao, et al. Research on the influence of key factors on the temperature characteristics of energy | |
storage immersing lithium-ion battery pack[J]. Energy Storage Science and Technology, 2025, 14(1): 152-161. | |
[16] | 陈岳浩,陈莎,陈慧兰,等.储能电池组浸没式液冷系统冷却性能模拟研究[J].储能科学与技术,2025,14(02):648-658.DOI:10.19799/j.cnki.2095-4239.2024.0751. |
CHEN Yuehao, CHEN Sha, CHEN Huilan, et al. Simulation study on cooling performance of immersion liquid cooling systems for energy-storage battery packs[J]. Energy Storage Science and Technology, 2025, 14(2): 648-658. | |
[17] | 张进强,王海民,鲁南.绝缘油浸没式冷却小型NCM811动力电池模组的温度场特性实验[J].储能科学与技术,2022,11(08):2612-2619.DOI:10.19799/j.cnki.2095-4239.2022.0261. |
Zhang Jinqiang, Wang Haimin, Lu Nan. Temperature field characteristics of a small NCM811 traction battery module cooled by insulating oil immersion[J]. Energy Storage Science and Technology, 2022, 11(8) : 2612-2619. | |
[18] | M. C,K.V. J,T. S, et al.Comprehensive experimental study of battery thermal management using single-phase liquid immersion cooling[J].Journal of Energy Storage,2025,111115445-115445. |
[19] | WU X, LU Y, OUYANG H, et al. Theoretical and experimental investigations on liquid immersion cooling battery packs for electric vehicles based on analysis of battery heat generation characteristics[J]. Energy Conversion and Management, 2024,310: 118478. |
[20] | Kim H G,Smith K,Lee J K, et al.Multi-Domain Modeling of Lithium-Ion Batteries Encompassing Multi-Physics in Varied Length Scales[J].Journal of The Electrochemical Society,2011,158(8):a955-a969. |
[21] | Shi Q,Liu Q,He K, et al.Optimization study on the immersion flow structure design for high-capacity battery module using 4-heat-source electro-thermal model[J].Applied Thermal Engineering,2025,262125226-125226. |
[22] | R. P T,M. M G,S. S J.Numerical investigation on thermal characteristics of a liquid-cooled lithium-ion battery pack with cylindrical cell casings and a square duct[J].Journal of Energy Storage,2022,48 |
[23] | Prahit D,Gautam P,K. A S.Direct Comparison of Immersion and Cold-Plate Based Cooling for Automotive Li-Ion Battery Modules[J].Energies,2021,14(5):1259-1259. |
[24] | K.V. J,P.K. R.Numerical analysis of single-phase liquid immersion cooling for lithium-ion battery thermal management using different dielectric fluids[J].International Journal of Heat and Mass Transfer,2022,188 |
[25] | Qian L,Le Q,Qianlei S, et al.Optimization of the active battery immersion cooling based on a self-organized fluid flow design[J].Journal of Energy Storage,2024,76 |
[26] | 王宇航,苑清扬,吴浩,等.软包电池组大倍率放电浸没冷却系统实验研究[J/OL].储能科学与技术,1-13[2025-05-27].https://doi.org/10.19799/j.cnki.2095-4239.2025.0272. |
WANG Yu-hang, YUAN Qing-yang, WU Hao, et al. Experimental study on immersion cooling system for high rate discharge of soft pack battery pack[J]. Energy Storage Science and Technology, XXXX, XX(XX): 1-12. | |
[27] | 毕然,贺鸿,徐雄艺,等.基于CFD数值模拟的储能电池箱液冷散热研究及优化[J].环境技术,2024,42(10):150-159. |
Bi Ran, He Hong, Xu Xiongyi, et al.Investigation and Optimization of Liquid Cooling of the Energy Storage Battery Pack Based on CFD Simulation[J]. Environmental Technology, 2024,42(10):150-159. | |
[28] | 陈晨,罗军,赵晓亮,等.液冷储能电池模块设计及仿真研究[J].河南科技,2024,51(20):10-13.DOI:10.19968/j.cnki.hnkj.1003-5168.2024.20.002. |
Chen Chen, Luo Jun, Zhao Xiaoliang, et al.Design and Simulation of Liquid-Cooled Energy Storage Battery Module[J].Journal of henan science and technology, 2024,51(20):10-13. | |
[29] | Gan H,Tian J,Qiu H, et al.Thermal performance of symmetrical double-spiral channel liquid cooling plate based battery thermal management for energy storage system[J].Applied Thermal Engineering,2025,263125399-125399. |
[30] | Lin W X,Shi Y M,Zhou F Z, et al.Multi-objective topology optimization design of liquid-based cooling plate for 280 Ah prismatic energy storage battery thermal management[J].Energy Conversion and Management,2025,325119440-119440. |
[31] | Xian Y,Zhang Z,Bai X, et al.Study on uniform distribution of liquid cooling pipeline in container battery energy storage system[J].Journal of Energy Storage,2025,112115395-115395. |
[32] | Jiahao L,Yining F,Jinhui W, et al.A model-scale experimental and theoretical study on a mineral oil-immersed battery cooling system[J].Renewable Energy,2022,201(P1):712-723. |
[33] | Hongseok C,Hyoseong L,Jeebeom K, et al.Hybrid single-phase immersion cooling structure for battery thermal management under fast-charging conditions[J].Energy Conversion and Management,2023,287 |
[34] | Liu Q,Liu Y,Zhang M, et al.Comprehensive investigation of the electro-thermal performance and heat transfer mechanism of battery system under forced flow immersion cooling[J].Energy,2024,298131404-. |
[1] | 庞超, 丁爽, 张晓琨, 向勇. 局域高浓度电解质溶剂化结构与离子迁移行为模拟研究[J]. 储能科学与技术, 2025, 14(8): 3207-3215. |
[2] | 向靖宇, 钟伟, 程时杰, 谢佳. 助力钠电池储能:预钠化技术研究新进展[J]. 储能科学与技术, 2025, 14(8): 3051-3064. |
[3] | 钟晓晖, 李将渊, 陆玮, 张乾能, 张辉, 郑卓群, 解晶莹, 罗英. 不同荷电区间钛酸锂电池循环容量衰减机制研究[J]. 储能科学与技术, 2025, 14(8): 2960-2969. |
[4] | 高蕾, 顾洪汇, 张益明, 黄伟, 陆海燕, 周琳, 顾梅嵘. 超高功率锂离子电池脉冲性能研究[J]. 储能科学与技术, 2025, 14(8): 2942-2949. |
[5] | 李鹏举, 陈晓宇, 谢佳, 沈佳妮, 贺益君. 锂离子电池功率状态预测方法研究进展[J]. 储能科学与技术, 2025, 14(8): 3028-3036. |
[6] | 黄康桥. 新型储能产业发展问题分析及政策建议研究[J]. 储能科学与技术, 2025, 14(7): 2617-2624. |
[7] | 郝维健, 牛萍健, 马天翼, 韩策, 柳邵辉. GB/T 31486—2024《电动汽车用动力蓄电池电性能要求及试验方法》标准解读与分析[J]. 储能科学与技术, 2025, 14(7): 2654-2661. |
[8] | 熊峰, 孔得朋, 平平, 张越, 任宪通, 吕耀. 电热耦合诱导三元锂离子电池热失控特性[J]. 储能科学与技术, 2025, 14(7): 2752-2760. |
[9] | 马昊远, 吴焱, 王通, 胡锦洋, 李佳, 黄钰期. 基于力-电-温度信号和CNN-BiLSTM模型的磷酸铁锂电池SOC估计[J]. 储能科学与技术, 2025, 14(7): 2865-2874. |
[10] | 李子琛, 孙钰婷, 张化璞, 张梦迪, 闫迎春, 张维民, 孟秀霞, 杨乃涛. 共价三嗪框架材料诱导稳定的Na/NASICON界面[J]. 储能科学与技术, 2025, (): 1-9. |
[11] | 王功瑞, 张安萍, 任萱萱, 杨铭哲, 韩宇宁, 吴忠帅. 高电压钴酸锂正极:关键挑战、改性策略与未来展望[J]. 储能科学与技术, 2025, 14(6): 2278-2319. |
[12] | 巫春玲, 王立顶, 卢勇, 耿莉敏, 陈昊, 孟锦豪. 基于白鹭群优化高斯过程回归的锂电池SOH估计方法[J]. 储能科学与技术, 2025, 14(6): 2498-2511. |
[13] | 贺悝, 冷肇星, 谭庄熙, 李雪源, 吴晓文, 陈超洋. 考虑放电倍率的电池储能容量自适应SOC估计方法[J]. 储能科学与技术, 2025, 14(6): 2405-2415. |
[14] | 卫丹, 张玉龙, 韩小娟, 陈立新. 多孔铁镍普鲁士蓝改性硫正极增强锂硫电池性能[J]. 储能科学与技术, 2025, 14(6): 2223-2231. |
[15] | 陈峥, 多功东, 申江卫, 沈世全, 刘昱, 魏福星. 基于容量增量分析与VMD-GWO-KELM的锂电池健康状态估计[J]. 储能科学与技术, 2025, 14(6): 2476-2487. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||