储能科学与技术 ›› 2022, Vol. 11 ›› Issue (10): 3221-3230.doi: 10.19799/j.cnki.2095-4239.2022.0269
廖世强1(), 张新燕1,2(), 刘莎莎1, 张光昊1, 黄利祥1, 施锐1
收稿日期:
2022-05-19
修回日期:
2022-05-27
出版日期:
2022-10-05
发布日期:
2022-10-10
通讯作者:
张新燕
E-mail:1523026955@qq.com;xjcxzxy@126.com
作者简介:
廖世强(1996—),男,硕士研究生,研究方向为储能系统建模与控制,E-mail:1523026955@qq.com;
基金资助:
Shiqiang LIAO1(), Xinyan ZHANG1,2(), Shasha LIU1, Guanghao ZHANG1, Lixiang HUANG1, Rui SHI1
Received:
2022-05-19
Revised:
2022-05-27
Online:
2022-10-05
Published:
2022-10-10
Contact:
Xinyan ZHANG
E-mail:1523026955@qq.com;xjcxzxy@126.com
摘要:
为发挥储能电池对电网调频特性的改善功能,针对储能电池参与电网一次调频进行了深入研究。首先建立含储能电池的高渗透率新能源区域电网的频率特性模型,并对其进行幅频特性分析,结果表明储能的加入可以有效提高电网的频率稳定性;为保证储能电池荷电状态(state of charge,SOC)的保持效果、电网调频需求以及储能电池的精确数学模型无法确定因素,提出一种考虑电池SOC,基于储能系统输入输出数据驱动的无模型自适应的储能控制策略,并给出相应的调频效果和SOC保持效果指标;最后在Matlab/Simulink搭建典型高渗透率新能源区域电网调频模型进行仿真。结果表明,所提策略能提高电网的抗干扰及自适应能力;与其他传统控制策略比较,所提策略在阶跃负荷扰动情况下,调频效果指标较佳;在长时负荷扰动(连续)情况下,所提策略的SOC指标最优,调频效果指标最佳。仿真结果验证了所提策略的可行性及优势。本文采用数据驱动研究方法,并没有采用传统的模型法,摆脱了对受控系统数学模型的高度依赖,有助于推动储能电池参与电网调频的更高效应用,为加速双碳目标提供更多思路。
中图分类号:
廖世强, 张新燕, 刘莎莎, 张光昊, 黄利祥, 施锐. 储能电池一次调频无模型自适应控制策略[J]. 储能科学与技术, 2022, 11(10): 3221-3230.
Shiqiang LIAO, Xinyan ZHANG, Shasha LIU, Guanghao ZHANG, Lixiang HUANG, Rui SHI. Model-free adaptive control strategy for primary frequency modulation of energy storage battery[J]. Energy Storage Science and Technology, 2022, 11(10): 3221-3230.
1 | 李军徽, 侯涛, 穆钢, 等. 电力市场环境下考虑风电调度和调频极限的储能优化控制[J]. 电工技术学报, 2021, 36(9): 1791-1804. |
LI J H, HOU T, MU G, et al. Optimal control strategy for energy storage considering wind farm scheduling plan and modulation frequency limitation under electricity market environment[J]. Transactions of China Electrotechnical Society, 2021, 36(9): 1791-1804. | |
2 | 刘畅, 卓建坤, 赵东明, 等. 利用储能系统实现可再生能源微电网灵活安全运行的研究综述[J]. 中国电机工程学报, 2020, 40(1): 1-18, 369. |
LIU C, ZHUO J K, ZHAO D M, et al. A review on the utilization of energy storage system for the flexible and safe operation of renewable energy microgrids[J]. Proceedings of the CSEE, 2020, 40(1): 1-18, 369. | |
3 | ZHUO Z Y, ZHANG N, YANG J W, et al. Transmission expansion planning test system for AC/DC hybrid grid with high variable renewable energy penetration[J]. IEEE Transactions on Power Systems, 2020, 35(4): 2597-2608. |
4 | 隋云任, 梁双印, 黄登超, 等. 飞轮储能辅助燃煤机组调频动态过程仿真研究[J]. 中国电机工程学报, 2020, 40(8): 2597-2606. |
SUI Y R, LIANG S Y, HUANG D C, et al. Simulation study on frequency modulation process of coal burning plants with auxiliary of flywheel energy storage[J]. Proceedings of the CSEE, 2020, 40(8): 2597-2606. | |
5 | 刘志成, 彭道刚, 赵慧荣, 等. 双碳目标下储能参与电力系统辅助服务发展前景[J]. 储能科学与技术, 2022, 11(2): 704-716. |
LIU Z C, PENG D G, ZHAO H R, et al. Development prospects of energy storage participating in auxiliary services of power systems under the targets of the dual-carbon goal[J]. Energy Storage Science and Technology, 2022, 11(2): 704-716. | |
6 | 裴哲义, 范高锋, 秦晓辉. 我国电力系统对大规模储能的需求分析[J]. 储能科学与技术, 2020, 9(5): 1562-1565. |
PEI Z Y, FAN G F, QIN X H. Demand analysis of large scale energy storage in China's power system[J]. Energy Storage Science and Technology, 2020, 9(5): 1562-1565. | |
7 | 陈玉龙, 武鑫, 滕伟, 等. 用于风电功率平抑的飞轮储能阵列功率协调控制策略[J]. 储能科学与技术, 2022, 11(2): 600-608. |
CHEN Y L, WU X, TENG W, et al. Power coordinated control strategy of flywheel energy storage array for wind power smoothing[J]. Energy Storage Science and Technology, 2022, 11(2): 600-608. | |
8 | TUSHAR W, YUEN C, SAHA T K, et al. Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges[J]. Applied Energy, 2021, 282: doi:10.1016/j.apenergy.2020.116131. |
9 | 张巍, 缪辉. 基于云储能租赁服务的风储参与能量-调频市场竞价策略研究[J]. 电网技术, 2021, 45(10): 3840-3852. |
ZHANG W, MIAO H. Bidding strategies of wind power and energy storage participating in energy and frequency regulation market based on cloud energy storage leasing services[J]. Power System Technology, 2021, 45(10): 3840-3852. | |
10 | TURK A, SANDELIC M, NOTO G, et al. Primary frequency regulation supported by battery storage systems in power system dominated by renewable energy sources[J]. The Journal of Engineering, 2019, 2019(18): 4986-4990. |
11 | MENG L X, ZAFAR J, KHADEM S K, et al. Fast frequency response from energy storage systems-A review of grid standards, projects and technical issues[J]. IEEE Transactions on Smart Grid, 2020, 11(2): 1566-1581. |
12 | 韩健民, 薛飞宇, 梁双印, 等. 模糊控制优化下的混合储能系统辅助燃煤机组调频仿真[J]. 储能科学与技术, 2022, 11(7): 2188-2196. |
HAN J M, XUE F Y, LIANG S Y, et al. Hybrid energy storage system assisted frequency modulation simulation of the coal-fired unit under fuzzy control optimization[J]. Energy Storage Science and Technology, 2022, 11(7): 2188-2196. | |
13 | 黄际元, 李欣然, 曹一家, 等. 考虑储能参与快速调频动作时机与深度的容量配置方法[J]. 电工技术学报, 2015, 30(12): 454-464. |
HUANG J Y, LI X R, CAO Y J, et al. Capacity allocation of energy storage system considering its action moment and output depth in rapid frequency regulation[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 454-464. | |
14 | 李欣然, 黄际元, 李培强, 等. 考虑电池储能仿真模型的一次调频特性评估[J]. 高电压技术, 2015, 41(7): 2135-2141. |
LI X R, HUANG J Y, LI P Q, et al. Performance evaluation of primary frequency regulation considering battery energy storage model[J]. High Voltage Engineering, 2015, 41(7): 2135-2141. | |
15 | 李军徽, 侯涛, 穆钢, 等. 基于权重因子和荷电状态恢复的储能系统参与一次调频策略[J]. 电力系统自动化, 2020, 44(19): 63-72. |
LI J H, HOU T, MU G, et al. Primary frequency regulation strategy with energy storage system based on weight factors and state of charge recovery[J]. Automation of Electric Power Systems, 2020, 44(19): 63-72. | |
16 | 贺鸿杰, 张宁, 杜尔顺, 等. 电网侧大规模电化学储能运行效率及寿命衰减建模方法综述[J]. 电力系统自动化, 2020, 44(12): 193-207. |
HE H J, ZHANG N, DU E S, et al. Review on modeling method for operation efficiency and lifespan decay of large-scale electrochemical energy storage on power grid side[J]. Automation of Electric Power Systems, 2020, 44(12): 193-207. | |
17 | 严干贵,王铭岐,段双明,张薇,李军徽,蔡长兴.基于储能调频系数和荷电状态恢复的储能一次调频控制策略[J/OL].电力系统自动化.(2022-05-12)[2022-05-28]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=DLXT20220512000&uniplatform=NZKPT&v=JjENo4CVsXBJFuzrd6hevDa4r2FluT800RyfsBSXuengZ64PO1UWcer3ufhfndA5 |
YAN Gangui, WANG Mingqi, DUAN Shuangming.et al. Primary frequency regulation control strategy of energy storage based on frequency regulation coefficient and state of charge recovery[J/OL]. Automation of Electric Power Systems. (2022-05-12)[2022-05-28]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=DLXT20220512000&uniplatform=NZKPT&v=JjENo4CVsXBJFuzrd6hevDa4r2FluT800RyfsBSXuengZ64PO1UWcer3ufhfndA5 | |
18 | 孙丙香, 李旸熙, 龚敏明, 等. 参与AGC辅助服务的锂离子电池储能系统经济性研究[J]. 电工技术学报, 2020, 35(19): 4048-4061. |
SUN B X, LI Y X, GONG M M, et al. Study on the economy of energy storage system with lithium-ion battery participating in AGC auxiliary service[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4048-4061. | |
19 | ZHU D W, ZHANG Y J A. Optimal coordinated control of multiple battery energy storage systems for primary frequency regulation[J]. IEEE Transactions on Power Systems, 2019, 34(1): 555-565. |
20 | 邓霞, 孙威, 肖海伟. 储能电池参与一次调频的综合控制方法[J]. 高电压技术, 2018, 44(4): 1157-1165. |
DENG X, SUN W, XIAO H W. Integrated control strategy of battery energy storage system in primary frequency regulation[J]. High Voltage Engineering, 2018, 44(4): 1157-1165. | |
21 | 侯忠生, 金尚泰. 无模型自适应控制: 理论与应用[M]. 北京: 科学出版社, 2013. |
HOU Z S, JIN S T. Model-free adaptive control: Theory and application [M]. Beijing: Science Press, 2013. | |
22 | 鲁效平, 李伟, 林勇刚. 基于无模型自适应控制器的风力发电机载荷控制[J]. 农业机械学报, 2011, 42(2): 109-114, 129. |
LU X P, LI W, LIN Y G. Load control of wind turbine based on model-free adaptive controller[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(2): 109-114, 129. | |
23 | CHI R H, HOU Z S. A model-free periodic adaptive control for freeway traffic density via ramp metering[J]. 自动化学报, 2010, 36(7): 1029-1032. |
CHI R H, HOU Z S. A model-free periodic adaptive control for freeway traffic density via ramp metering[J]. Acta Automatica Sinica, 2010, 36(7): 1029-1032. | |
24 | 侯忠生, 董航瑞, 金尚泰. 基于坐标补偿的自动泊车系统无模型自适应控制[J]. 自动化学报, 2015, 41(4): 823-831. |
HOU Z S, DONG H R, JIN S T. Model-free adaptive control with coordinates compensation for automatic car parking systems[J]. Acta Automatica Sinica, 2015, 41(4): 823-831. | |
25 | 葛乐. 清洁能源定制电能并网控制关键技术研究[D]. 南京: 南京航空航天大学, 2016. |
GE (L /Y). Research on grid-connected control technology for custom power of clean energy[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. | |
26 | 米阳, 伦雪莹, 孟凡斌, 等. 基于无模型算法和电动汽车辅助调节的新能源电力系统频率协调控制[J]. 电力系统保护与控制, 2021, 49(24): 13-20. |
MI Y, LUN X Y, MENG F B, et al. Frequency coordinated control of a new energy power system based on a model-free algorithm and EV auxiliary regulation[J]. Power System Protection and Control, 2021, 49(24): 13-20. | |
27 | KUNDUR P. Power system stability and control[M]. New York: McGraw-Hill. |
28 | 韩晓娟, 程成, 籍天明, 等. 计及电池使用寿命的混合储能系统容量优化模型[J]. 中国电机工程学报, 2013, 33(34): 91-97, 16. |
HAN X J, CHENG C, JI T M, et al. Capacity optimal modeling of hybrid energy storage systems considering battery life[J]. Proceedings of the CSEE, 2013, 33(34): 91-97, 16. | |
29 | 黄际元, 李欣然, 曹一家, 等. 面向电网调频应用的电池储能电源仿真模型[J]. 电力系统自动化, 2015, 39(18): 20-24, 74. |
HUANG J Y, LI X R, CAO Y J, et al. Battery energy storage power supply simulation model for power grid frequency regulation[J]. Automation of Electric Power Systems, 2015, 39(18): 20-24, 74. | |
30 | 李欣然, 邓涛, 黄际元, 等. 储能电池参与电网快速调频的自适应控制策略[J]. 高电压技术, 2017, 43(7): 2362-2369. |
LI X R, DENG T, HUANG J Y, et al. Battery energy storage systemsê self-adaptation control strategy in fast frequency regulation[J]. High Voltage Engineering, 2017, 43(7): 2362-2369. |
[1] | 姜竹, 邹博杨, 丛琳, 谢春萍, 李传, 谯耕, 赵彦琦, 聂彬剑, 张童童, 葛志伟, 马鸿坤, 金翼, 李永亮, 丁玉龙. 储热技术研究进展与展望[J]. 储能科学与技术, 2022, 11(9): 2746-2771. |
[2] | 耿晓倩, 徐玉杰, 黄景坚, 凌浩恕, 张雪辉, 孙爽, 陈海生. 先进压缩空气储能系统全生命周期能耗及二氧化碳排放[J]. 储能科学与技术, 2022, 11(9): 2971-2979. |
[3] | 张华民. 全钒液流电池的技术进展、不同储能时长系统的价格分析及展望[J]. 储能科学与技术, 2022, 11(9): 2772-2780. |
[4] | 袁治章, 刘宗浩, 李先锋. 液流电池储能技术研究进展[J]. 储能科学与技术, 2022, 11(9): 2944-2958. |
[5] | 唐奡, 严川伟. 液流电池模拟仿真研究现状与展望[J]. 储能科学与技术, 2022, 11(9): 2866-2878. |
[6] | 李泓, 张强. 蓄势赋能谋发展,勇毅笃行谱新篇[J]. 储能科学与技术, 2022, 11(9): 2691-2701. |
[7] | 李相俊, 官亦标, 胡娟, 来小康. 我国储能示范工程领域十年(2012—2022)回顾[J]. 储能科学与技术, 2022, 11(9): 2702-2712. |
[8] | 王进芝, 韩晓蕾, 许超锋, 赵井文, 唐越, 崔光磊. 基于氧化物固态电解质的储能钠电池的研究进展[J]. 储能科学与技术, 2022, 11(9): 2834-2846. |
[9] | 徐成善, 鲁博瑞, 张梦启, 王淮斌, 金昌勇, 欧阳明高, 冯旭宁. 储能锂离子电池预制舱热失控烟气流动研究[J]. 储能科学与技术, 2022, 11(8): 2418-2431. |
[10] | 曹志成, 周开运, 朱家立, 刘高明, 严慜, 汤舜, 曹元成, 程时杰, 张炜鑫. 锂离子电池储能系统消防技术的中国专利分析[J]. 储能科学与技术, 2022, 11(8): 2664-2670. |
[11] | 蔡兴初, 朱一鸣, 姜可尚, 席旭峰, 张艺超, 林惟实. 全氟己酮气体灭火系统在磷酸铁锂电池储能预制舱的应用[J]. 储能科学与技术, 2022, 11(8): 2497-2504. |
[12] | 唐亮, 尹小波, 吴候福, 刘鹏杰, 王青松. 电化学储能产业发展对安全标准的需求[J]. 储能科学与技术, 2022, 11(8): 2645-2652. |
[13] | 许磊, 刘晓鹏, 王勇俞. 全尺寸预制舱式储能柜热失控早期征兆分析[J]. 储能科学与技术, 2022, 11(8): 2463-2470. |
[14] | 石爽, 吕娜伟, 马敬轩, 尹康涌, 孙磊, 张宁, 金阳. 不同类型气体探测对磷酸铁锂电池储能舱过充安全预警有效性对比[J]. 储能科学与技术, 2022, 11(8): 2452-2462. |
[15] | 霍丽萍, 栾伟玲, 庄子贤. 锂离子电池储能安全技术的发展态势[J]. 储能科学与技术, 2022, 11(8): 2671-2680. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||