储能科学与技术 ›› 2024, Vol. 13 ›› Issue (1): 167-177.doi: 10.19799/j.cnki.2095-4239.2023.0807
• 高比能二次电池关键材料与先进表征专刊 • 上一篇 下一篇
收稿日期:
2023-11-10
修回日期:
2023-11-27
出版日期:
2024-01-05
发布日期:
2024-01-22
通讯作者:
李真
E-mail:zhangyi2020@hust.edu.cn;li_zhen@hust.edu.cn
作者简介:
张怡(1998—),男,博士研究生,从事锂电池监测研究,E-mail:zhangyi2020@hust.edu.cn;
基金资助:
Yi ZHANG(), Xiaoyu GE, Zhen LI(), Yunhui HUANG
Received:
2023-11-10
Revised:
2023-11-27
Online:
2024-01-05
Published:
2024-01-22
Contact:
Zhen LI
E-mail:zhangyi2020@hust.edu.cn;li_zhen@hust.edu.cn
摘要:
锂电池技术的快速发展使其成为了应用最广泛的电化学储能器件。然而电池性能提升的同时也带来了日益凸显的安全问题,需要开发先进的监测传感技术获取电池内部的物理、化学信息,以更好地理解电池的内在物理化学机制并评估电池状态。基于此,本文首先介绍了电池无损监测技术的发展历史,并重点介绍了基于声学和光学的电池无损检测技术。声学传感技术只需在电池外部布设声学探头,即可获得其内部结构变化、产气等信息,是一种理想的无损监测方式。光学传感凭借其传感器体积小、耐腐蚀、抗电磁干扰等优势,可以植入到电池内部,获取电池全生命周期内部热学、力学、化学等多种传感信息。通过这些先进的传感技术,能够最大限度地评估和预测电池的健康状态、工况可靠性、剩余寿命和安全性。最后本文讨论了下一代智能电池开发应用面临的机遇与挑战。
中图分类号:
张怡, 葛筱渔, 李真, 黄云辉. 用于锂电池监测的声学和光学传感技术研究进展[J]. 储能科学与技术, 2024, 13(1): 167-177.
Yi ZHANG, Xiaoyu GE, Zhen LI, Yunhui HUANG. Progress on acoustic and optical sensing technologies for lithium rechargeable batteries[J]. Energy Storage Science and Technology, 2024, 13(1): 167-177.
1 | TIAN Y S, ZENG G B, RUTT A, et al. Promises and challenges of next-generation "beyond Li-ion" batteries for electric vehicles and grid decarbonization[J]. Chemical Reviews, 2021, 121(3): 1623-1669. |
2 | HUANG Y M, LI J. Key challenges for grid-scale lithium-ion battery energy storage[J]. Advanced Energy Materials, 2022, 12(48): 2202197. |
3 | XIANG J W, WEI Y, ZHONG Y, et al. Building practical high-voltage cathode materials for lithium-ion batteries[J]. Advanced Materials, 2022, 34(52): 2200912. |
4 | KIM N, KIM Y, SUNG J, et al. Issues impeding the commercialization of laboratory innovations for energy-dense Si-containing lithium-ion batteries[J]. Nature Energy, 2023, 8(9): 921-933. |
5 | XIANG J W, YANG L Y, YUAN L X, et al. Alkali-metal anodes: From lab to market[J]. Joule, 2019, 3(10): 2334-2363. |
6 | DUAN J, TANG X, DAI H F, et al. Building safe lithium-ion batteries for electric vehicles: A review[J]. Electrochemical Energy Reviews, 2020, 3(1): 1-42. |
7 | DOMINKO R, FICHTNER M, OTUSZEWSKI T, et al. Battery 2030+[EB/OL]. [2023-01-05]. https://battery2030.eu/research/roadmap/ |
8 | 辛耀达, 李娜, 杨乐, 等. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
XIN Y D, LI N, YANG L, et al. Integrated sensing technology for lithium ion battery[J]. Energy Storage Science and Technology, 2022, 11(6): 1834-1846. | |
9 | 郝奕帆, 祝夏雨, 王静, 等. 电池无损检测监测方法分析[J]. 储能科学与技术, 2023, 12(5): 1713-1737. |
HAO Y F, ZHU X Y, WANG J, et al. Analysis of battery nondestructive testing and monitoring methods[J]. Energy Storage Science and Technology, 2023, 12(5): 1713-1737. | |
10 | ZHANG Y, LI Y P, GUO Z Z, et al. Health monitoring by optical fiber sensing technology for rechargeable batteries[J]. eScience, 2023: 100174. |
11 | HUANG J Q, BOLES S T, TARASCON J M. Sensing as the key to battery lifetime and sustainability[J]. Nature Sustainability, 2022, 5(3): 194-204. |
12 | BRIGHT C T, GLADSTONE J H, PREECE W H, et al. Remarks on "On reversible lead batteries and their use for electric lighting"[J]. Journal of the Society of Telegraph-Engineers and Electricians, 1887, 16(66): 184-218. |
13 | NAGAI Y, TOMOKUNI Y, MATSUI T. Optical-type hydrometer for lead-acid batteries and its applications[C]//INTELEC'87-The Ninth International Telecommunications Energy Conference. June 14-17, 1987, Stockholm, Sweden. IEEE, 2009: 640-647. |
14 | LANPHIER R C. The ampere-hour meter for electric vehicles[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1911, 6: 371-393. |
15 | KEDDAM M, STOYNOV Z, TAKENOUTI H. Impedance measurement on Pb/H2SO4 batteries[J]. Journal of Applied Electrochemistry, 1977, 7(6): 539-544. |
16 | MAS J A. Battery charging system and transducer therefor[J]. United States Patent Office,1969. |
17 | CAO-PAZ A M, RODRÍGUEZ-PARDO L, FARIÑA J, et al. Resolution in QCM sensors for the viscosity and density of liquids: Application to lead acid batteries[J]. Sensors, 2012, 12(8): 10604-10620. |
18 | DAY R P, XIA J, PETIBON R, et al. Differential thermal analysis of Li-ion cells as an effective probe of liquid electrolyte evolution during aging[J]. Journal of the Electrochemical Society, 2015, 162(14): A2577-A2581. |
19 | DENG Z, HUANG Z Y, SHEN Y, et al. Ultrasonic scanning to observe wetting and "unwetting" in Li-ion pouch cells[J]. Joule, 2020, 4(9): 2017-2029. |
20 | WORRELL C A, REDFERN B A W. Acoustic emission studies of the breakdown of beta-alumina under conditions of sodium ion transport[J]. Journal of Materials Science, 1978, 13(7): 1515-1520. |
21 | HUANG J Q, ALBERO BLANQUER L, BONEFACINO J, et al. Operando decoding of chemical and thermal events in commercial Na(Li)-ion cells via optical sensors[J]. Nature Energy, 2020, 5(9): 674-683. |
22 | MAJASAN J O, ROBINSON J B, OWEN R E, et al. Recent advances in acoustic diagnostics for electrochemical power systems[J]. Journal of Physics: Energy, 2021, 3(3): 032011. |
23 | OHZUKU T, MATOBA N, SAWAI K. Direct evidence on anomalous expansion of graphite-negative electrodes on first charge by dilatometry[J]. Journal of Power Sources, 2001, 97/98: 73-77. |
24 | RHODES K, DUDNEY N, LARA-CURZIO E, et al. Understanding the degradation of silicon electrodes for lithium-ion batteries using acoustic emission[J]. Journal of the Electrochemical Society, 2010, 157(12): A1354. |
25 | CHOE C Y, JUNG W S, BYEON J W. Damage evaluation in lithium cobalt oxide/carbon electrodes of secondary battery by acoustic emission monitoring[J]. Materials Transactions, 2015, 56(2): 269-273. |
26 | 邓哲, 黄震宇, 刘磊, 等. 超声技术在锂离子电池表征中的应用[J]. 储能科学与技术, 2019, 8(6): 1033-1039. |
DENG Z, HUANG Z Y, LIU L, et al. Applications of ultrasound technique in characterization of lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(6): 1033-1039. | |
27 | WU J Y, RAO Z X, LIU X T, et al. Lithium-metal batteries: Polycationic polymer layer for air-stable and dendrite-free Li metal anodes in carbonate electrolytes [J]. Advanced Materials, 2021, 33(12): e2007428. |
28 | 谢宏, 黄锴, 杜进桥, 等. 锂离子电池电解液痕量水污染的超声表象[J]. 储能科学与技术, 2022, 11(12): 4030-4037. |
XIE H, HUANG K, DU J Q, et al. Studies on ultrasonic appearance of trace water contamination in lithium-ion battery electrolyte[J]. Energy Storage Science and Technology, 2022, 11(12): 4030-4037. | |
29 | HUO H Y, HUANG K, LUO W, et al. Evaluating interfacial stability in solid-state pouch cells via ultrasonic imaging[J]. ACS Energy Letters, 2022, 7(2): 650-658. |
30 | HSIEH A G, BHADRA S, HERTZBERG B J, et al. Electrochemical-acoustic time of flight: in operando correlation of physical dynamics with battery charge and health[J]. Energy & Environmental Science, 2015, 8(5): 1569-1577. |
31 | HUANG Z Y, ZHOU Y, DENG Z, et al. Precise state-of-charge mapping via deep learning on ultrasonic transmission signals for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(6): 8217-8223. |
32 | YU Y F, VERGORI E, MADDAR F, et al. Real-time monitoring of internal structural deformation and thermal events in lithium-ion cell via embedded distributed optical fibre[J]. Journal of Power Sources, 2022, 521: 230957. |
33 | HUANG J Q, BLANQUER L A, GERVILLIÉ C, et al. Distributed fiber optic sensing to assess In-live temperature imaging inside batteries: Rayleigh and FBGs[J]. Journal of the Electrochemical Society, 2021, 168(6): 060520. |
34 | MEI W X, LIU Z, WANG C D, et al. Operando monitoring of thermal runaway in commercial lithium-ion cells via advanced lab-on-fiber technologies[J]. Nature Communications, 2023, 14: 5251. |
35 | BAE C J, MANANDHAR A, KIESEL P, et al. Monitoring the strain evolution of lithium-ion battery electrodes using an optical fiber Bragg grating sensor[J]. Energy Technology, 2016, 4(7): 851-855. |
36 | GANGULI A, SAHA B, RAGHAVAN A, et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 2: Internal cell signals and utility for state estimation[J]. Journal of Power Sources, 2017, 341: 474-482. |
37 | MIAO Z Y, LI Y P, XIAO X P, et al. Direct optical fiber monitor on stress evolution of the sulfur-based cathodes for lithium-sulfur batteries[J]. Energy & Environmental Science, 2022, 15(5): 2029-2038. |
38 | ALBERO BLANQUER L, MARCHINI F, SEITZ J R, et al. Optical sensors for operando stress monitoring in lithium-based batteries containing solid-state or liquid electrolytes[J]. Nature Communications, 2022, 13: 1153. |
39 | LI Y P, ZHANG Y, LI Z, et al. Operando decoding of surface strain in anode-free lithium metal batteries via optical fiber sensor[J]. Advanced Science, 2022, 9(26): e2203247. |
40 | XI J W, LI J Z, SUN H, et al. In-situ monitoring of internal temperature and strain of solid-state battery based on optical fiber sensors[J]. Sensors and Actuators A: Physical, 2022, 347: 113888. |
41 | GHANNOUM A, NORRIS R C, IYER K, et al. Optical characterization of commercial lithiated graphite battery electrodes and in situ fiber optic evanescent wave spectroscopy[J]. ACS Applied Materials & Interfaces, 2016, 8(29): 18763-18769. |
42 | GHANNOUM A, NIEVA P, YU A P, et al. Development of embedded fiber-optic evanescent wave sensors for optical characterization of graphite anodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(47): 41284-41290. |
43 | HEDMAN J, NILEBO D, LARSSON LANGHAMMER E, et al. Fibre optic sensor for characterisation of lithium-ion batteries[J]. ChemSusChem, 2020, 13(21): 5731-5739. |
44 | GERVILLIÉ-MOURAVIEFF C, BOUSSARD-PLÉDEL C, HUANG J Q, et al. Unlocking cell chemistry evolution with operando fibre optic infrared spectroscopy in commercial Na(Li)-ion batteries[J]. Nature Energy, 2022, 7:1157-1169. |
45 | HUANG J Q, HAN X L, LIU F, et al. Monitoring battery electrolyte chemistry via in-operando tilted fiber Bragg grating sensors[J]. Energy & Environmental Science, 2021, 14(12): 6464-6475. |
46 | WANG R L, ZHANG H Z, LIU Q Y, et al. Operando monitoring of ion activities in aqueous batteries with plasmonic fiber-optic sensors[J]. Nature Communications, 2022, 13: 547. |
47 | MIELE E, DOSE W M, MANYAKIN I, et al. Hollow-core optical fibre sensors for operando Raman spectroscopy investigation of Li-ion battery liquid electrolytes[J]. Nature Communications, 2022, 13: 1651. |
[1] | 李晨威, 徐世国, 余海峰, 于松民, 江浩. 镁掺杂改性LiMn0.5Fe0.5PO4/C正极材料与性能研究[J]. 储能科学与技术, 2024, 13(6): 1767-1774. |
[2] | 孙琦, 彭豪, 孟庆国, 孔德凯, 冯睿. 极限工况下储能电池包热适应性[J]. 储能科学与技术, 2024, 13(6): 2039-2043. |
[3] | 张玉超, 张凤姣, 娄伟, 昝飞翔, 王琳玲, 盛安旭, 吴晓辉, 陈静. 废旧锂离子电池有价金属资源化利用的转化过程和潜在环境影响[J]. 储能科学与技术, 2024, 13(6): 1861-1870. |
[4] | 汤旭旭, 许铤, 储德韧. 镍钴锰三元锂离子电池不同电压下浮充失效机理及热安全研究[J]. 储能科学与技术, 2024, 13(6): 2044-2053. |
[5] | 钟国彬, 姚鑫, 刘永超, 侯倩, 项宏发. 锂离子电池高安全复合隔膜的挑战和未来展望[J]. 储能科学与技术, 2024, 13(6): 1794-1806. |
[6] | 唐梓巍, 师玉璞, 张雨禅, 周奕博, 杜慧玲. 基于Informer神经网络的锂离子电池容量退化轨迹预测[J]. 储能科学与技术, 2024, 13(5): 1658-1666. |
[7] | 缪胤宝, 张文华, 刘伟昊, 王帅, 陈哲, 彭望, 曾杰. 富锂正极材料Li1.2Ni0.13Co0.13Mn0.54O2 的制备及性能[J]. 储能科学与技术, 2024, 13(5): 1427-1434. |
[8] | 廉高棨, 叶敏, 王桥, 李岩, 麻玉川, 孙乙丁, 杜鹏辉. 基于改进模型与优化自适应CKF的锂离子电池快速变温工况下的SOC估计[J]. 储能科学与技术, 2024, 13(5): 1667-1676. |
[9] | 吕兆财, 王玉西, 汪智涛, 孙晓辉, 李景康. 热辊压对锂离子电池正极极片性能的影响[J]. 储能科学与技术, 2024, 13(5): 1443-1450. |
[10] | 李润源, 郭傅傲, 赵钢超. 集装箱式锂离子电池储能系统消防安全早期预警方法[J]. 储能科学与技术, 2024, 13(5): 1595-1602. |
[11] | 何林, 刘江岩, 刘彬, 李夔宁, 代帅. 数据分布多样性对锂电池SOC预测的泛化影响[J]. 储能科学与技术, 2024, 13(5): 1677-1687. |
[12] | 韩亚露, 陈奕戈, 邸会芳, 林杰欢, 王振兵, 张扬, 苏方远, 陈成猛. 锂离子电池不同服役工况下失效研究进展[J]. 储能科学与技术, 2024, 13(4): 1338-1349. |
[13] | 袁悦博, 王贺武, 孔祥栋, 蒲明伟, 孙玉坤, 韩雪冰, 欧阳明高. 金属异物缺陷演化特性及其对产线 K 值的影响机制[J]. 储能科学与技术, 2024, 13(4): 1197-1204. |
[14] | 李革, 孔祥栋, 孙跃东, 陈飞, 袁悦博, 韩雪冰, 郑岳久. 基于产线大数据的锂离子电池一致性动态特性分选方法[J]. 储能科学与技术, 2024, 13(4): 1188-1196. |
[15] | 刘淳正, 来沛霈, 孙卓, 聂耳, 张哲娟. 构造凹陷的硅碳颗粒提高锂离子电池负极电化学性能[J]. 储能科学与技术, 2024, 13(4): 1302-1309. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||