1 |
LI Z, GUAN B Y, ZHANG J T, et al. A compact nanoconfined sulfur cathode for high-performance lithium-sulfur batteries[J]. Joule, 2017, 1(3): 576-587.
|
2 |
谭超, 王超. 功能化氧化石墨烯作为锂硫电池正极硫载体的性能研究[J]. 储能科学与技术, 2023, 12(4): 1025-1033.
|
|
TAN C, WANG C. Study on the performance of functionalized graphene oxide as positive sulfur carrier for lithium-sulfur batteries[J]. Energy Storage Science and Technology, 2023, 12(4): 1025-1033.
|
3 |
王小飞, 蓝大为, 张道明, 等. 基于锂掺杂分子筛改性隔膜的高性能锂硫电池[J]. 储能科学与技术, 2022, 11(11): 3447-3454.
|
|
WANG X F, LAN D W, ZHANG D M, et al. High-performance lithium-sulfur batteries enabled by a separator modified by lithium-doped zeolite[J]. Energy Storage Science and Technology, 2022, 11(11): 3447-3454.
|
4 |
HU B, XU J E, FAN Z J, et al. Covalent organic framework based lithium-sulfur batteries: Materials, interfaces, and solid-state electrolytes[J]. Advanced Energy Materials, 2023, 13(10): 2203540.
|
5 |
沈炎宾, 陈立桅. 高能量密度动力电池材料电化学[J]. 科学通报, 2020, 65(S1): 117-126.
|
|
SHEN Y B, CHEN L W. Materials electrochemistry for high energy density power batteries[J]. Chinese Science Bulletin, 2020, 65(S1): 117-126.
|
6 |
张顺, 曾芳磊, 李宁, 等. 高阻燃硫正极的制备及其性能[J]. 储能科学与技术, 2023, 12(4): 1018-1024.
|
|
ZHANG S, ZENG F L, LI N, et al. Study on the preparation and properties of high-flame retardant sulfur cathode[J]. Energy Storage Science and Technology, 2023, 12(4): 1018-1024.
|
7 |
KANNAN S K, JOSEPH J, JOSEPH M G. Review and perspectives on advanced binder designs incorporating multifunctionalities for lithium-sulfur batteries[J]. Energy & Fuels, 2023, 37(9): 6302-6322.
|
8 |
SEH Z W, SUN Y M, ZHANG Q F, et al. Designing high-energy lithium-sulfur batteries[J]. Chemical Society Reviews, 2016, 45(20): 5605-5634.
|
9 |
FANG R P, ZHAO S Y, SUN Z H, et al. More reliable lithium-sulfur batteries: Status, solutions and prospects[J]. Advanced Materials, 2017, 29(48): 1606823.
|
10 |
石凯, 安德成, 贺艳兵, 等. 基于聚合物电解质固态锂硫电池的研究进展和发展趋势[J]. 储能科学与技术, 2017, 6(3): 479-492.
|
|
SHI K, AN D C, HE Y B, et al. Research progress and future trends of solid state lithium-sulfur batteries based on polymer electrolytes[J]. Energy Storage Science and Technology, 2017, 6(3): 479-492.
|
11 |
KIM A, OH S H, ADHIKARI A, et al. Recent advances in modified commercial separators for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2023, 11(15): 7833-7866.
|
12 |
PENG H J, ZHANG Z W, HUANG J Q, et al. A cooperative interface for highly efficient lithium-sulfur batteries[J]. Advanced Materials, 2016, 28(43): 9551-9558.
|
13 |
ZHOU J J, GUO Y S, LIANG C D, et al. Confining small sulfur molecules in peanut shell-derived microporous graphitic carbon for advanced lithium sulfur battery[J]. Electrochimica Acta, 2018, 273: 127-135.
|
14 |
XIAN C X, WANG Q Y, XIA Y, et al. Solid-state electrolytes in lithium-sulfur batteries: Latest progresses and prospects[J]. Small, 2023, 19(24): e2208164.
|
15 |
JI X L, LEE K T, NAZAR L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8(6): 500-506.
|
16 |
MANTHIRAM A, CHUNG S H, ZU C X. Lithium-sulfur batteries: Progress and prospects[J]. Advanced Materials, 2015, 27(12): 1980-2006.
|
17 |
LIANG C D, DUDNEY N J, HOWE J Y. Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery[J]. Chemistry of Materials, 2009, 21(19): 4724-4730.
|
18 |
XU T, SONG J X, GORDIN M L, et al. Mesoporous carbon-carbon nanotube-sulfur composite microspheres for high-areal-capacity lithium-sulfur battery cathodes[J]. ACS Applied Materials & Interfaces, 2013, 5(21): 11355-11362.
|
19 |
JAYAPRAKASH N, SHEN J, MOGANTY S S, et al. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2011, 50(26): 5904-5908.
|
20 |
ZHANG C F, WU H B, YUAN C Z, et al. Confining sulfur in double-shelled hollow carbon spheres for lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2012, 51(38): 9592-9595.
|
21 |
XING L B, XI K, LI Q Y, et al. Nitrogen, sulfur-codoped graphene sponge as electroactive carbon interlayer for high-energy and-power lithium-sulfur batteries[J]. Journal of Power Sources, 2016, 303: 22-28.
|
22 |
XIA Q Q, LIU Y Z, MENG J, et al. Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass[J]. Green Chemistry, 2018, 20(12): 2711-2721.
|
23 |
PENG Y, NAIR S S, CHEN H Y, et al. Effects of lignin content on mechanical and thermal properties of polypropylene composites reinforced with micro particles of spray dried cellulose nanofibrils[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 11078-11086.
|
24 |
SHEN X J, ZHANG C F, HAN B X, et al. Catalytic self-transfer hydrogenolysis of lignin with endogenous hydrogen: Road to the carbon-neutral future[J]. Chemical Society Reviews, 2022, 51(5): 1608-1628.
|
25 |
BEAUCAMP A, CULEBRAS M, COLLINS M N. Sustainable mesoporous carbon nanostructures derived from lignin for early detection of glucose[J]. Green Chemistry, 2021, 23(15): 5696-5705.
|
26 |
LIU T, SUN S M, SONG W, et al. A lightweight and binder-free electrode enabled by lignin fibers@carbon-nanotubes and graphene for ultrastable lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2018, 6(46): 23486-23494.
|
27 |
YEON J S, PARK S H, SUK J, et al. Confinement of sulfur in the micropores of honeycomb-like carbon derived from lignin for lithium-sulfur battery cathode[J]. Chemical Engineering Journal, 2020, 382: 122946.
|
28 |
SCHUSTER J, HE G A, MANDLMEIER B, et al. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2012, 51(15): 3591-3595.
|
29 |
LI S, LIN Z H, HE G J, et al. Cellulose substance derived nanofibrous activated carbon as a sulfur host for lithium-sulfur batteries[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602: 125129.
|
30 |
GUPTA S, WEINER B R, MORELL G. Ex situ spectroscopic ellipsometry and Raman spectroscopy investigations of chemical vapor deposited sulfur incorporated nanocrystalline carbon thin films[J]. Journal of Applied Physics, 2002, 92(9): 5457-5462.
|
31 |
YANG J, WANG S Y, MA Z P, et al. Novel nitrogen-doped hierarchically porous coralloid carbon materials as host matrixes for lithium-sulfur batteries[J]. Electrochimica Acta, 2015, 159: 8-15.
|
32 |
YU F Q, LI Y L, JIA M, et al. Elaborate construction and electrochemical properties of lignin-derived macro-/ micro-porous carbon-sulfur composites for rechargeable lithium-sulfur batteries: The effect of sulfur-loading time[J]. Journal of Alloys and Compounds, 2017, 709: 677-685.
|
33 |
TANG C, ZHANG Q A, ZHAO M Q, et al. Nitrogen-doped aligned carbon nanotube/graphene sandwiches: Facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries[J]. Advanced Materials, 2014, 26(35): 6100-6105.
|
34 |
GU X X, WANG Y Z, LAI C, et al. Microporous bamboo biochar for lithium-sulfur batteries[J]. Nano Research, 2015, 8(1): 129-139.
|