储能科学与技术 ›› 2024, Vol. 13 ›› Issue (4): 1225-1238.doi: 10.19799/j.cnki.2095-4239.2024.0075
• 电池智能制造、在线监测与原位分析专刊 • 上一篇 下一篇
张晓平(), 容远嘉, 王潜雁, 高梦林, 廖亚玲, 吴民生, 庄鑫鑫, 黄中昱, 万美君, 陈维荣()
收稿日期:
2024-01-25
修回日期:
2024-02-10
出版日期:
2024-04-26
发布日期:
2024-04-22
通讯作者:
张晓平,陈维荣
E-mail:zxp@swjtu.edu.cn;wrchen@swjtu.cn
作者简介:
张晓平(1993—),女,博士,副教授,研究方向为高能量密度锂金属电池,E-mail:zxp@swjtu.edu.cn;
基金资助:
Xiaoping ZHANG(), Yuanjia RONG, Qianyan WANG, Menglin GAO, Yaling LIAO, Minsheng WU, Xinxin ZHUANG, Zhongyu HUANG, Meijun WAN, Weirong CHEN()
Received:
2024-01-25
Revised:
2024-02-10
Online:
2024-04-26
Published:
2024-04-22
Contact:
Xiaoping ZHANG, Weirong CHEN
E-mail:zxp@swjtu.edu.cn;wrchen@swjtu.cn
摘要:
锂氧气电池以其极高的能量密度受到了科研工作者们的广泛关注。然而,锂氧气电池存在金属锂负极稳定性差、充电过电位高等关键难题,使得电池循环寿命短、能量利用效率低,距离大规模应用还有很长一段距离。为了推动锂氧气电池的发展,越来越多的先进原位表征手段用于研究锂氧气电池的机理和优化电池结构。先进的原位表征技术不仅可以用于获取电池的静态信息,同时能准确获取电池在循环过程中的动态电化学行为以及结构演变过程,对于推动锂氧气电池的发展有着重要意义。本文综述了近年来应用于锂氧气电池原位表征手段的相关研究进展,包括原位显微表征技术、原位X射线表征技术、原位质谱表征技术等。通过具体的研究案例,分析了各种原位表征技术的功能,总结了其在锂氧气电池领域里的具体应用场景,揭示了锂氧气电池更深层次的反应机理,并探讨和展望了未来锂氧气电池研究中需要的先进原位表征技术。
中图分类号:
张晓平, 容远嘉, 王潜雁, 高梦林, 廖亚玲, 吴民生, 庄鑫鑫, 黄中昱, 万美君, 陈维荣. 原位表征技术在锂氧气电池中的研究进展[J]. 储能科学与技术, 2024, 13(4): 1225-1238.
Xiaoping ZHANG, Yuanjia RONG, Qianyan WANG, Menglin GAO, Yaling LIAO, Minsheng WU, Xinxin ZHUANG, Zhongyu HUANG, Meijun WAN, Weirong CHEN. Advancements in insitu characterization techniques for lithium-oxygen batteries[J]. Energy Storage Science and Technology, 2024, 13(4): 1225-1238.
1 | ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451: 652-657. |
2 | BRUCE P G, SCROSATI B, TARASCON J M. Nanomaterials for rechargeable lithium batteries[J]. Angewandte Chemie International Edition, 2008, 47(16): 2930-2946. |
3 | TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414: 359-367. |
4 | ZHANG W J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(1): 13-24. |
5 | LIN D C, LIU Y Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12: 194-206. |
6 | LU Y C, GALLANT B M, KWABI D G, et al. Lithium-oxygen batteries: Bridging mechanistic understanding and battery performance[J]. Energy & Environmental Science, 2013, 6(3): 750-768. |
7 | WHITTINGHAM M S. Lithium batteries and cathode materials[J]. Chemical Reviews, 2004, 104(10): 4271-4301. |
8 | BRANDT K. Historical development of secondary lithium batteries[J]. Solid State Ionics, 1994, 69(3/4): 173-183. |
9 | SADD M, XIONG S Z, BOWEN J R, et al. Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy[J]. Nature Communications, 2023, 14: 854. |
10 | LI X, ZHENG J M, REN X D, et al. Dendrite-free and performance-enhanced lithium metal batteries through optimizing solvent compositions and adding combinational additives[J]. Advanced Energy Materials, 2018, 8(15): 1703022. |
11 | KANG J H, LEE J, JUNG J W, et al. Lithium-air batteries: Air-breathing challenges and perspective[J]. ACS Nano, 2020, 14(11): 14549-14578. |
12 | KANG S, MO Y F, ONG S P, et al. A facile mechanism for recharging Li2O2 in Li-O2 batteries[J]. Chemistry of Materials, 2013, 25(16): 3328-3336. |
13 | LI H Y, GUO S H, ZHOU H S. In-situ/operando characterization techniques in lithium-ion batteries and beyond[J]. Journal of Energy Chemistry, 2021, 59: 191-211. |
14 | ZHENG H, XIAO D D, LI X, et al. New insight in understanding oxygen reduction and evolution in solid-state lithium-oxygen batteries using an in situ environmental scanning electron microscope[J]. Nano Letters, 2014, 14(8): 4245-4249. |
15 | ZHOU S Y, LIU K G, YING Y F, et al. Perspective of operando/in situ scanning electron microscope in rechargeable batteries[J]. Current Opinion in Electrochemistry, 2023, 41: 101374. |
16 | MÉTOIS J J, NITSCHE S, HEYRAUD J C. An ultra-high-vacuum transmission and scanning electron microscope for crystal growth experiments[J]. Ultramicroscopy, 1989, 27(4): 349-357. |
17 | 陆敬予, 柯承志, 龚正良, 等. 原位表征技术在全固态锂电池中的应用[J]. 物理学报, 2021, 70(19): 236-262. |
LU J Y, KE C Z, GONG Z L, et al. Application of in situ characterization techniques in all-solid-state lithium batteries[J]. Acta Physica Sinica, 2021, 70(19): 236-262. | |
18 | SU Q M, XIE J, Du G H, et al. In situ transmission electron microscopy observation of electrochemical behavior of CoS2 in lithium-ion battery[J]. ACS Applied Materials & Interfaces, 2014, 6(4): 3016-3022. |
19 | KUSHIMA A, KOIDO T, FUJIWARA Y, et al. Charging/discharging nanomorphology asymmetry and rate-dependent capacity degradation in Li-oxygen battery[J]. Nano Letters, 2015, 15(12): 8260-8265. |
20 | HE K, BI X, YUAN Y, et al. Operando liquid cell electron microscopy of discharge and charge kinetics in lithium-oxygen batteries[J]. Nano Energy, 2018, 49: 338-345. |
21 | AHN S, ZOR C, YANG S X, et al. Why charging Li-air batteries with current low-voltage mediators is slow and singlet oxygen does not explain degradation[J]. Nature Chemistry, 2023, 15: 1022-1029. |
22 | YANG C C, HAN J H, LIU P, et al. Direct observations of the formation and redox-mediator-assisted decomposition of Li2O2 in a liquid-cell Li-O2 microbattery by scanning transmission electron microscopy[J]. Advanced Materials, 2017, 29(41): 1702752. |
23 | HOU C, HAN J H, LIU P, et al. Synergetic effect of liquid and solid catalysts on the energy efficiency of Li-O2 batteries: Cell performances and operando STEM observations[J]. Nano Letters, 2020, 20(3): 2183-2190. |
24 | SHIM J H, KANG H, LEE S H, et al. Utilization of electron-beam irradiation under atomic-scale chemical mapping for evaluating the cycling performance of lithium transition metal oxide cathodes[J]. Journal of Materials Chemistry A, 2021, 9(4): 2429-2437. |
25 | WANG X F, LI Y J, MENG Y S. Cryogenic electron microscopy for characterizing and diagnosing batteries[J]. Joule, 2018, 2(11): 2225-2234. |
26 | LI Y Z, LI Y B, PEI A, et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy[J]. Science, 2017, 358(6362): 506-510. |
27 | LLEWELLYN A V, MATRUGLIO A, BRETT D J L, et al. Using in-situ laboratory and synchrotron-based X-ray diffraction for lithium-ion batteries characterization: A review on recent developments[J]. Condensed Matter, 2020, 5(4): 75. |
28 | XU C, MÄRKER K, LEE J H, et al. Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries[J]. Nature Materials, 2021, 20: 84-92. |
29 | WEN Y X, DING S J, MA C C, et al. In situ TEM visualization of Ag catalysis in Li-O2 nanobatteries[J]. Nano Research, 2023, 16(5): 6833-6839. |
30 | WANG M M, SONG Z B, BI J X, et al. Probing interfacial electrochemistry by in situ atomic force microscope for battery characterization[J]. Battery Energy, 2023, 2(6): 20230006. |
31 | SHEN Z Z, LANG S Y, ZHOU C, et al. In situ realization of water-mediated interfacial processes at nanoscale in aprotic Li-O2 batteries[J]. Advanced Energy Materials, 2020, 10(46): 2002339. |
32 | WEN R, BYON H R. In situ monitoring of the Li-O2 electrochemical reaction on nanoporous gold using electrochemical AFM[J]. Chemical Communications, 2014, 50(20): 2628-2631. |
33 | CORTÉS H A, CORTI H R. In-situ characterization of discharge products of lithium-oxygen battery using flow electrochemical atomic force microscopy[J]. Ultramicroscopy, 2021, 230: 113369. |
34 | YAO K P C, KWABI D G, QUINLAN R A, et al. Thermal stability of Li2O2 and Li2O for Li-air batteries: In situ XRD and XPS studies[J]. Journal of the Electrochemical Society, 2013, 160(6): A824-A831. |
35 | ZHANG T, AMINE R, BI X X, et al. Exploring the charge reactions in a Li-O2 system with lithium oxide cathodes and nonaqueous electrolytes[J]. Journal of Materials Chemistry A, 2019, 7(26): 15615-15620. |
36 | GAO R, ZHOU D, NING D, et al. Probing the self-boosting catalysis of LiCoO2 in Li-O2 battery with multiple in situ/operando techniques[J]. Advanced Functional Materials, 2020, 30(28): 2002223. |
37 | LUO X Y, PIERNAVIEJA-HERMIDA M, LU J, et al. Pd nanoparticles on ZnO-passivated porous carbon by atomic layer deposition: An effective electrochemical catalyst for Li-O2 battery[J]. Nanotechnology, 2015, 26(16): 164003. |
38 | MA L, WANG L G, LIU T C, et al. Probing distinctive redox mechanism in Ni-rich cathode via real-time quick X-ray absorption spectroscopy[J]. Small Methods, 2023, 7(1): e2201173. |
39 | ZHAO Z W, PANG L, WU Y Y, et al. In situ spectroscopic probing of oxygen crossover effects on solid electrolyte interphase in aprotic lithium-oxygen batteries[J]. Advanced Energy Materials, 2023, 13(29): 2301127. |
40 | JOSEPETTI D M, SOUSA B P, RODRIGUES S A J, et al. The initial stages of Li2O2 formation during oxygen reduction reaction in Li-O2 batteries: The significance of Li2O2 in charge-transfer reactions within devices[J]. Journal of Energy Chemistry, 2024, 88: 223-231. |
41 | GE A M, NAGAI R, NEMOTO K, et al. Unraveling the solvent stability on the cathode surface of Li-O2 batteries by using in situ vibrational spectroscopies[J]. Faraday Discussions, 2024, 248: 119-133. |
42 | GAUTHIER M, NGUYEN M H, BLONDEAU L, et al. Operando NMR characterization of a metal-air battery using a double-compartment cell design[J]. Solid State Nuclear Magnetic Resonance, 2021, 113: 101731. |
43 | WANDT J, JAKES P, GRANWEHR J, et al. Singlet oxygen formation during the charging process of an aprotic lithium-oxygen battery[J]. Angewandte Chemie International Edition, 2016, 55(24): 6892-6895. |
44 | 杨家豪, 施兆平, 王意波, 等. 用于酸性析氧反应研究的原位表征技术[J]. 储能科学与技术, 2021, 10(6): 1877-1890. |
YANG J H, SHI Z P, WANG Y B, et al. In-situ/operando characterization techniques for oxygen evolution in acidic media[J]. Energy Storage Science and Technology, 2021, 10(6): 1877-1890. | |
45 | 徐伦. 高性能锂/氧气电池制备及其基础性能研究[D]. 北京: 清华大学, 2014. |
XU L. Design and investigation of lithium/oxygen batteries with advanced performances[D]. Beijing: Tsinghua University, 2014. | |
46 | TSIOUVARAS N, MEINI S, BUCHBERGER I, et al. A novel on-line mass spectrometer design for the study of multiple charging cycles of a Li-O2 battery[J]. Journal of the Electrochemical Society, 2013, 160(3): A471-A477. |
47 | LIANG Z J, ZOU Q L, XIE J, et al. Suppressing singlet oxygen generation in lithium-oxygen batteries with redox mediators[J]. Energy & Environmental Science, 2020, 13(9): 2870-2877. |
48 | LIANG Z J, ZOU Q L, WANG Y, et al. Recent progress in applying in situ/operando characterization techniques to probe the solid/liquid/gas interfaces of Li-O2 batteries[J]. Small Methods, 2017, 1(7): 1700150. |
49 | WANG Y, LU Y C. Isotopic labeling reveals active reaction interfaces for electrochemical oxidation of lithium peroxide[J]. Angewandte Chemie International Edition, 2019, 58(21): 6962-6966. |
50 | LAI N C, CONG G T, LIANG Z J, et al. A highly active oxygen evolution catalyst for lithium-oxygen batteries enabled by high-surface-energy facets[J]. Joule, 2018, 2(8): 1511-1521. |
51 | LIANG Z, WANG W, LU Y C. The path toward practical Li-air batteries[J]. Joule, 2022, 6(11): 2458-2473. |
52 | GÖLDNER V, ULKE J, KIRCHNER B, et al. Electrochemistry-mass spectrometry bridging the gap between suspect and target screening of valsartan transformation products in wastewater treatment plant effluent[J]. Water Research, 2023, 244: 120525. |
53 | KIM S, KIM H S, KIM B, et al. In situ gas analysis by differential electrochemical mass spectrometry for advanced rechargeable batteries: A review[J]. Advanced Energy Materials, 2023, 13(39): 2301983. |
54 | SIM R, LANGDON J, MANTHIRAM A. Design of an online electrochemical mass spectrometry system to study gas evolution from cells with lean and volatile electrolytes[J]. Small Methods, 2023, 7(6): 2201438. |
[1] | 许旭鹏, 许旭明, 陈虹艳, 梁雅儒, 雷维新, 马增胜, 陈国新, 柯培玲. 原位表征技术在锂硫电池机理研究中的应用[J]. 储能科学与技术, 2024, 13(4): 1239-1252. |
[2] | 闫苏, 钟芳芳, 刘俊伟, 丁美, 贾传坤. 高能量密度液流电池关键材料与先进表征[J]. 储能科学与技术, 2024, 13(1): 143-156. |
[3] | 贾铭勋, 吴桐, 杨道通, 秦小茜, 刘景海, 段莉梅. 锂硫电池电解液多功能添加剂:作用机制及先进表征[J]. 储能科学与技术, 2024, 13(1): 36-47. |
[4] | 张永辉, 傅杰, 李先锋, 张长昆. 原位表征技术在水系有机液流电池中的研究进展[J]. 储能科学与技术, 2023, 12(9): 2971-2984. |
[5] | 郝奕帆, 祝夏雨, 王静, 邱景义, 明海, 方振华. 电池无损检测监测方法分析[J]. 储能科学与技术, 2023, 12(5): 1713-1737. |
[6] | 汤才, 蒋江民, 王新峰, 刘广发, 崔艳华, 庄全超. Li/CF x 一次电池研究进展[J]. 储能科学与技术, 2023, 12(4): 1093-1109. |
[7] | 姚逸鸣, 栾伟玲, 陈莹, 孙敏. 基于光学显微镜的锂离子电池材料老化衰减原位研究进展[J]. 储能科学与技术, 2023, 12(3): 777-791. |
[8] | 陈珂君, 范利君. 钴掺杂FeS2 的可控制备及储钠特性研究[J]. 储能科学与技术, 2023, 12(10): 3056-3063. |
[9] | 吕思奇, 李娜, 陈浩森, 焦树强, 宋维力. 电池电极过程可视化与定量化技术的研究进展[J]. 储能科学与技术, 2022, 11(3): 795-817. |
[10] | 赵志伟, 杨智, 彭章泉. 飞行时间二次离子质谱在锂基二次电池中的应用[J]. 储能科学与技术, 2022, 11(3): 781-794. |
[11] | 杨家豪, 施兆平, 王意波, 葛君杰, 刘长鹏, 邢巍. 用于酸性析氧反应研究的原位表征技术[J]. 储能科学与技术, 2021, 10(6): 1877-1890. |
[12] | 李月霞, 刘全兵. MXene基纳米材料在氧还原电催化中的应用[J]. 储能科学与技术, 2021, 10(6): 1918-1930. |
[13] | 牟粤, 杜韫, 明海, 张松通, 邱景义. 锂离子电池正极材料本体结构演变及界面行为研究方法[J]. 储能科学与技术, 2021, 10(1): 7-26. |
[14] | 李林林, 王昱杰, 门一飞, 杨伟, 邹汉波, 陈胜洲. 湿法冶金回收技术中无机酸作为浸出剂的研究进展[J]. 储能科学与技术, 2021, 10(1): 68-76. |
[15] | 李林林, 曹林娟, 麦永雄, 门一飞, 杨伟, 陈胜洲. 废旧锂离子电池有机酸湿法冶金回收技术研究进展[J]. 储能科学与技术, 2020, 9(6): 1641-1650. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||