1 |
EFTEKHARI A, KIM D W. Sodium-ion batteries: New opportunities beyond energy storage by lithium[J]. Journal of Power Sources, 2018, 395: 336-348. DOI: 10.1016/j.jpowsour.2018.05.089.
|
2 |
ZHANG S S. Status, opportunities, and challenges of electrochemical energy storage[J]. Frontiers in Energy Research, 2013, 1: DOI: 10.3389/fenrg.2013.00008.
|
3 |
YU T W, LI G H, DUAN Y, et al. The research and industrialization progress and prospects of sodium ion battery[J]. Journal of Alloys and Compounds, 2023, 958: DOI: 10.1016/j.jallcom.2023.170486.
|
4 |
SAWICKI M, SHAW L L. Advances and challenges of sodium ion batteries as post lithium ion batteries[J]. RSC Advances, 2015, 5(65): 53129-53154. DOI: 10.1039/C5RA08321D.
|
5 |
NAYAK P K, YANG L T, BREHM W, et al. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises[J]. Angewandte Chemie International Edition, 2018, 57(1): 102-120. DOI: 10.1002/anie.201703772.
|
6 |
LIU Q N, HU Z, LI W J, et al. Sodium transition metal oxides: The preferred cathode choice for future sodium-ion batteries?[J]. Energy & Environmental Science, 2021, 14(1): 158-179. DOI: 10.1039/D0EE02997A.
|
7 |
DELMAS C, FOUASSIER C, HAGENMULLER P. Structural classification and properties of the layered oxides[J]. Physica B+C, 1980, 99(1/2/3/4): 81-85. DOI: 10.1016/0378-4363(80)90214-4.
|
8 |
PALANIYANDY N. Recent developments on layered 3d-transtition metal oxide cathode materials for sodium-ion batteries[J]. Current Opinion in Electrochemistry, 2020, 21: 319-326. DOI: 10.1016/j.coelec.2020.03.023.
|
9 |
CHEN M Z, LIU Q N, WANG S W, et al. High-abundance and low-cost metal-based cathode materials for sodium-ion batteries: Problems, progress, and key technologies[J]. Advanced Energy Materials, 2019, 9(14): DOI: 10.1002/aenm.201803609.
|
10 |
YOU Y, XIN S, ASL H Y, et al. Insights into the improved high-voltage performance of Li-incorporated layered oxide cathodes for sodium-ion batteries[J]. Chem, 2018, 4(9): 2124-2139. DOI: 10.1016/j.chempr.2018.05.018.
|
11 |
ZHAO Y S, LIU Q, ZHAO X H, et al. Structure evolution of layered transition metal oxide cathode materials for Na-ion batteries: Issues, mechanism and strategies[J]. Materials Today, 2023, 62: 271-295. DOI: 10.1016/j.mattod.2022.11.024.
|
18 |
DANG R B, LI Q, CHEN M M, et al. CuO-Coated and Cu2+-doped co-modified P2-type Na2/3[Ni1/3Mn2/3]O2 for sodium-ion batteries[J]. Physical Chemistry Chemical Physics, 2019, 21(1): 314-321. DOI: 10.1039/C8CP06248J.
|
19 |
LIU Y H, FANG X, ZHANG A Y, et al. Layered P2-Na2/3[Ni1/3Mn2/3]O2 as high-voltage cathode for sodium-ion batteries: The capacity decay mechanism and Al2O3 surface modification[J]. Nano Energy, 2016, 27: 27-34. DOI: 10.1016/j.nanoen.2016.06.026.
|
20 |
MATHIYALAGAN K, SHIN D, LEE Y C. Difficulties, strategies, and recent research and development of layered sodium transition metal oxide cathode materials for high-energy sodium-ion batteries[J]. Journal of Energy Chemistry, 2024, 90: 40-57. DOI: 10.1016/j.jechem.2023.10.023.
|
21 |
LI W, YAO Z J, ZHANG S Z, et al. Exploring the stability effect of the co-substituted P2-Na0.67[Mn0.67Ni0.33]O2 cathode for liquid- and solid-state sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(37): 41477-41484. DOI: 10.1021/acsami.0c11375.
|
22 |
YANG T T, HUANG Y L, ZHANG J, et al. Insights into Ti doping for stabilizing the Na2/3Fe1/3Mn2/3O2 cathode in sodium ion battery[J]. Journal of Energy Chemistry, 2022, 73: 542-548. DOI: 10.1016/j.jechem.2022.06.016.
|
23 |
ZHENG X B, LI P, ZHU H J, et al. New insights into understanding the exceptional electrochemical performance of P2-type manganese-based layered oxide cathode for sodium ion batteries[J]. Energy Storage Materials, 2018, 15: 257-265. DOI: 10.1016/j.ensm.2018.05.001.
|
24 |
MAO Q J, YU Y, WANG J K, et al. Mitigating the P2-O2 transition and Na+/vacancy ordering in Na2/3Ni1/3Mn2/3O2 by anion/cation dual-doping for fast and stable Na+ insertion/extraction[J]. Journal of Materials Chemistry A, 2021, 9(17): 10803-10811. DOI: 10.1039/D1TA01433A.
|
25 |
CHEN X L, GUO W Y, LI R, et al. Structure, electrochemical, and transport properties of Li- and F-modified P2-Na2/3Ni1/3Mn2/3O2 cathode materials for Na-ion batteries[J]. Coatings, 2023, 13(3): DOI: 10.3390/coatings13030626.
|
26 |
LIU K, TAN S S, MOON J, et al. Insights into the enhanced cycle and rate performances of the F-substituted P2-type oxide cathodes for sodium-ion batteries[J]. Advanced Energy Materials, 2020, 10(19): DOI: 10.1002/aenm.202000135.
|
27 |
CUI X L, WANG S M, YE X S, et al. Insights into the improved cycle and rate performance by ex-situ F and in situ Mg dual doping of layered oxide cathodes for sodium-ion batteries[J]. Energy Storage Materials, 2022, 45: 1153-1164. DOI: 10.1016/j.ensm.2021.11.016.
|
28 |
ZHANG F P, LIAO J H, XU L, et al. Stabilizing P2-type Ni-Mn oxides as high-voltage cathodes by a doping-integrated coating strategy based on zinc for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(34): 40695-40704. DOI: 10.1021/acsami.1c12062.
|
29 |
KONG W J, WANG H B, SUN L M, et al. Understanding the synergic roles of MgO coating on the cycling and rate performance of Na0.67Mn0.5Fe0.5O2 cathode[J]. Applied Surface Science, 2019, 497: DOI: 10.1016/j.apsusc.2019.143814.
|
30 |
ZHOU D, NING D, WANG J, et al. Clarification of underneath capacity loss for O3 - type Ni, co free layered cathodes at high voltage for sodium ion batteries[J]. Journal of Energy Chemistry, 2023, 77: 479-486. DOI: 10.1016/j.jechem.2022.11.031.
|
31 |
LIU J, ZHOU J K, ZHAO Z J, et al. Deciphering the formation process and electrochemical behavior of novel P2/O3 biphasic layered cathode with long cycle life for sodium-ion batteries[J]. Journal of Power Sources, 2023, 560: DOI: 10.1016/j.jpowsour.2023.232686.
|